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Preface

Logic appears in a “sacred” and in a “profane” form; the sacred form is dominant in
proof theory, the profane form in model theory. The phenomenon is not unfamiliar,
one also observes this dichotomy in other areas, e.g. set theory and recursion the-
ory. Some early catastrophes, such as the discovery of the set theoretical paradoxes
(Cantor, Russell), or the definability paradoxes (Richard, Berry), make us treat a
subject for some time with the utmost awe and diffidence. Sooner or later, how-
ever, people start to treat the matter in a more free and easy way. Being raised in
the “sacred” tradition, my first encounter with the profane tradition was something
like a culture shock. Hartley Rogers introduced me to a more relaxed world of logic
by his example of teaching recursion theory to mathematicians as if it were just an
ordinary course in, say, linear algebra or algebraic topology. In the course of time
I have come to accept this viewpoint as the didactically sound one: before going
into esoteric niceties one should develop a certain feeling for the subject and obtain
a reasonable amount of plain working knowledge. For this reason this introductory
text sets out in the profane vein and tends towards the sacred only at the end.

The present book has developed from courses given at the Mathematics Depart-
ment of Utrecht University. The experience drawn from these courses and the re-
action of the participants suggested strongly that one should not practice and teach
logic in isolation. As soon as possible examples from everyday mathematics should
be introduced; indeed, first-order logic finds a rich field of applications in the study
of groups, rings, partially ordered sets, etc.

The role of logic in mathematics and computer science is twofold—a tool for
applications in both areas, and a technique for laying the foundations. The latter
role will be neglected here, we will concentrate on the daily matters of formalized
(or formalizable) science. Indeed, I have opted for a practical approach—I will cover
the basics of proof techniques and semantics, and then go on to topics that are less
abstract. Experience has taught us that the natural deduction technique of Gentzen
lends itself best to an introduction; it is close enough to actual informal reasoning
to enable students to devise proofs by themselves. Hardly any artificial tricks are
involved, and at the end there is the pleasing discovery that the system has striking
structural properties; in particular it perfectly suits the constructive interpretation of
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vi Preface

logic and it allows normal forms. The latter topic has been added to this edition in
view of its importance in theoretical computer science. In Chap. 4 we already have
enough technical power to obtain some of the traditional and (even today) surprising
model theoretic results.

The book is written for beginners without knowledge of more advanced topics;
no esoteric set theory or recursion theory is required. The basic ingredients are natu-
ral deduction and semantics, and the latter is presented in constructive and classical
form.

In Chap. 6 intuitionistic logic is treated on the basis of natural deduction without
the rule of reductio ad absurdum, and of Kripke semantics. Intuitionistic logic has
gradually freed itself from the image of eccentricity and now it is recognized for its
usefulness in e.g. topos theory and type theory; hence its inclusion in an introduc-
tory text is fully justified. The chapter on normalization has been added for the same
reasons; normalization plays an important role in certain parts of computer science.
Traditionally normalization (and cut elimination) belong to proof theory, but grad-
ually applications in other areas have been introduced. In Chap. 7 we consider only
weak normalization, and a number of easy applications are given.

Various people have contributed to the shaping of the text at one time or another;
Dana Scott, Jane Bridge, Henk Barendregt and Jeff Zucker have been most helpful
for the preparation of the first edition. Since then many colleagues and students
have spotted mistakes and suggested improvements; this edition benefited from the
remarks of Eleanor McDonnell, A. Scedrov and Karst Koymans. To all of these
critics and advisers I am grateful. Progress has dictated that the traditional typewriter
should be replaced by more modern devices; this book has been redone in LATEX by
Addie Dekker and my wife, Doke. Addie led the way with the first three sections
of Chap. 2 and Doke finished the rest of the manuscript; I am indebted to both of
them, especially to Doke who found time and courage to master the secrets of the
LATEX trade. Thanks go to Leen Kievit for putting together the derivations and for
adding the finer touches required for a LATEX manuscript. Paul Taylor’s macro for
proof trees has been used for the natural deduction derivations.

June 1994 Dirk van Dalen

The conversion to TEX has introduced a number of typos that are corrected in
the present new printing. Many readers have been kind enough to send me their col-
lection of misprints, and I am grateful to them for their help. In particular I want
to thank Jan Smith, Vincenzo Scianna, A. Ursini, Mohammad Ardeshir and Nori-
hiro Kamide. Here in Utrecht my logic classes have been very helpful; in particular
Marko Hollenberg, who taught part of a course, has provided me with useful com-
ments. Thanks go to them too.

I have used the occasion to incorporate a few improvements. The definition of
“subformula” has been streamlined—together with the notion of positive and neg-
ative occurrence. There is also a small addendum on “induction on the rank of a
formula”.

January 1997 Dirk van Dalen



Preface vii

At the request of users I have added a chapter on the incompleteness of arithmetic. It
makes the book more self-contained, and adds useful information on basic recursion
theory and arithmetic. The coding of formal arithmetic makes use of the exponen-
tial; this is not the most efficient coding, but for the heart of the argument that is not
of the utmost importance. In order to avoid extra work the formal system of arith-
metic contains the exponential. As the proof technique of the book is that of natural
deduction, the coding of the notion of derivability is also based on it. There are of
course many other approaches. The reader is encouraged to consult the literature.

The material of this chapter is by and large that of a course given in Utrecht in
1993. Students have been most helpful in commenting on the presentation, and in
preparing TEX versions. W. Dean has kindly pointed out some more corrections in
the old text.

The final text has benefited from the comments and criticism of a number of
colleagues and students. I am grateful for the advice of Lev Beklemishev, John
Kuiper, Craig Smoryński and Albert Visser. Thanks are due to Xander Schrijen,
whose valuable assistance helped to overcome the TEX problems.

May 2003 Dirk van Dalen

A number of corrections have been provided by Tony Hurkens; furthermore, I am
indebted to him and Harold Hodes for pointing out that the definition of “free for”
was in need of improvement. Sjoerd Zwart found a nasty typo that had escaped me
and all (or most) readers.

April 2008 Dirk van Dalen

To the fifth edition a new section on ultraproducts has been added. The topic has a
long history and it presents an elegant and instructive approach to the role of models
in logic.

Again I have received comments and suggestions from readers. It is a pleasure
to thank Diego Barreiro, Victor Krivtsov, Einam Livnat, Thomas Opfer, Masahiko
Rokuyama, Katsuhiko Sano, Patrick Skevik and Iskender Tasdelen.

2012 Dirk van Dalen
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Chapter 1
Introduction

Without adopting one of the various views advocated in the foundations of mathe-
matics, we may agree that mathematicians need and use a language, if only for the
communication of their results and their problems. While mathematicians have been
claiming the greatest possible exactness for their methods, they have been less sen-
sitive as to their means of communication. It is well known that Leibniz proposed
to put the practice of mathematical communication and mathematical reasoning on
a firm base; it was, however, not before the nineteenth century that those enterprises
were (more) successfully undertaken by G. Frege and G. Peano. No matter how
ingeniously and rigorously Frege, Russell, Hilbert, Bernays and others developed
mathematical logic, it was only in the second half of this century that logic and its
language showed any features of interest to the general mathematician. The sophis-
ticated results of Gödel were of course immediately appreciated, but for a long time
they remained technical highlights without practical use. Even Tarski’s result on the
decidability of elementary algebra and geometry had to bide its time before any
applications turned up.

Nowadays the applications of logic to algebra, analysis, topology, etc. are nu-
merous and well recognized. It seems strange that quite a number of simple facts,
within the grasp of any student, were overlooked for such a long time. It is not pos-
sible to give proper credit to all those who opened up this new territory. Any list
would inevitably show the preferences of the author, and neglect some fields and
persons.

Let us note that mathematics has a fairly regular, canonical way of formulating
its material, partly by its nature, partly under the influence of strong schools, like
the one of Bourbaki. Furthermore the crisis at the beginning of this century has
forced mathematicians to pay attention to the finer details of their language and to
their assumptions concerning the nature and the extent of the mathematical universe.
This attention started to pay off when it was discovered that there was in some cases
a close connection between classes of mathematical structures and their syntactical
description. Here is an example:

It is well known that a subset of a group G which is closed under multiplication
and inverse, is a group; however, a subset of an algebraically closed field F which

D. van Dalen, Logic and Structure, Universitext, DOI 10.1007/978-1-4471-4558-5_1,
© Springer-Verlag London 2013
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2 1 Introduction

is closed under sum, product, minus and inverse, is in general not an algebraically
closed field. This phenomenon is an instance of something quite general: an axioma-
tizable class of structures is axiomatized by a set of universal sentences (of the form
∀x1, . . . , xnϕ, with ϕ quantifier free) iff it is closed under substructures. If we check
the axioms of group theory we see that indeed all axioms are universal, while not all
the axioms of the theory of algebraically closed fields are universal. The latter fact
could of course be accidental, it could be the case that we were not clever enough to
discover a universal axiomatization of the class of algebraically closed fields. The
above theorem of Tarski and Los tells us, however, that it is impossible to find such
an axiomatization!

The point of interest is that for some properties of a class of structures we have
simple syntactic criteria. We can, so to speak, read the behavior of the real mathe-
matical world (in some simple cases) from its syntactic description.

There are numerous examples of the same kind, e.g. Lyndon’s theorem: an axiom-
atizable class of structures is closed under homomorphisms iff it can be axiomatized
by a set of positive sentences (i.e. sentences which, in prenex normal form with the
open part in disjunctive normal form, do not contain negations).

The most basic and at the same time monumental example of such a connec-
tion between syntactical notions and the mathematical universe is of course Gödel’s
completeness theorem, which tells us that provability in the familiar formal systems
is extensionally identical with truth in all structures. That is to say, although prov-
ability and truth are totally different notions (the first is combinatorial in nature, the
latter set theoretical), they determine the same class of sentences: ϕ is provable iff
ϕ is true in all structures.

Given the fact that the study of logic involves a great deal of syntactical toil, we
will set out by presenting an efficient machinery for dealing with syntax. We use the
technique of inductive definitions and as a consequence we are rather inclined to see
trees wherever possible; in particular we prefer natural deduction in the tree form to
the linear versions that are here and there in use.

One of the amazing phenomena in the development of the foundations of math-
ematics is the discovery that the language of mathematics itself can be studied by
mathematical means. This is far from a futile play: Gödel’s incompleteness theo-
rems, for instance, lean heavily on a mathematical analysis of the language of arith-
metic, and the work of Gödel and Cohen in the field of the independence proofs
in set theory requires a thorough knowledge of the mathematics of mathematical
language. Set theory remains beyond the scope of this book, but a simple approach
to the incompleteness of arithmetic has been included. We will aim at a thorough
treatment, in the hope that the reader will realize that all these things which he sus-
pects to be trivial, but cannot see why, are perfectly amenable to proof. It may help
the reader to think of himself as a computer with great mechanical capabilities, but
with no creative insight, in those cases where he is puzzled because “why should
we prove something so utterly evident”! On the other hand the reader should keep
in mind that he is not a computer and that, certainly when he gets beyond Chap. 3,
certain details should be recognized as trivial.
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For the actual practice of mathematics predicate logic is doubtlessly the perfect
tool, since it allows us to handle individuals. All the same we start this book with an
exposition of propositional logic. There are various reasons for this choice.

In the first place propositional logic offers in miniature the problems that we
meet in predicate logic, but there the additional difficulties obscure some of the rele-
vant features; e.g. the completeness theorem for propositional logic already uses the
concept of “maximal consistent set”, but without the complications of the Henkin
axioms.

In the second place there are a number of truly propositional matters that would
be difficult to treat in a chapter on predicate logic without creating a impression of
discontinuity that borders on chaos. Finally it seems a matter of sound pedagogy
to let propositional logic precede predicate logic. The beginner can, in a simple
context, get used to the proof theoretical, algebraic and model theoretic skills that
would be overbearing in a first encounter with predicate logic.

All that has been said about the role of logic in mathematics can be repeated for
computer science; the importance of syntactical aspects is even more pronounced
than in mathematics, but it does not stop there. The literature of theoretical com-
puter science abounds with logical systems, completeness proofs and the like. In
the context of type theory (typed lambda calculus) intuitionistic logic has gained an
important role, whereas the technique of normalization has become a staple diet for
computer scientists.



Chapter 2
Propositional Logic

2.1 Propositions and Connectives

Traditionally, logic is said to be the art (or study) of reasoning; so in order to describe
logic in this tradition, we have to know what “reasoning” is. According to some
traditional views reasoning consists of the building of chains of linguistic entities
by means of a certain relation “. . . follows from . . . ”, a view which is good enough
for our present purpose. The linguistic entities occurring in this kind of reasoning
are taken to be sentences, i.e. entities that express a complete thought, or state of
affairs. We call those sentences declarative. This means that, from the point of view
of natural language, our class of acceptable linguistic objects is rather restricted.

Fortunately this class is wide enough when viewed from the mathematician’s
point of view. So far logic has been able to get along pretty well under this restric-
tion. True, one cannot deal with questions, or imperative statements, but the role
of these entities is negligible in pure mathematics. I must make an exception for
performative statements, which play an important role in programming; think of
instructions as “goto, if . . . then, else . . . ”, etc. For reasons given below, we will,
however, leave them out of consideration.

The sentences we have in mind are of the kind “27 is a square number”, “every
positive integer is the sum of four squares”, “there is only one empty set”. A com-
mon feature of all those declarative sentences is the possibility of assigning them
a truth value, true or false. We do not require the actual determination of the truth
value in concrete cases, such as for instance Goldbach’s conjecture or Riemann’s
hypothesis. It suffices that we can “in principle” assign a truth value.

Our so-called two-valued logic is based on the assumption that every sentence is
either true or false; it is the cornerstone of the practice of truth tables.

Some sentences are minimal in the sense that there is no proper part which is also
a sentence, e.g. 5 ∈ {0,1,2,5,7}, or 2+2= 5; others can be taken apart into smaller
parts, e.g. “c is rational or c is irrational” (where c is some constant). Conversely,
we can build larger sentences from smaller ones by using connectives. We know
many connectives in natural language; the following list is by no means meant to be
exhaustive: and, or, not, if . . . then . . . , but, since, as, for, although, neither . . . nor

D. van Dalen, Logic and Structure, Universitext, DOI 10.1007/978-1-4471-4558-5_2,
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6 2 Propositional Logic

. . . . In ordinary discourse, and also in informal mathematics, one uses these con-
nectives incessantly; however, in formal mathematics we will economize somewhat
on the connectives we admit. This is mainly for reason of exactness. Compare, for
example, the following two sentences: “π is irrational, but it is not algebraic”, “Max
is a Marxist, but he is not humorless”. In the second statement we may discover a
suggestion of some contrast, as if we should be surprised that Max is not humorless.
In the first case such a surprise cannot be so easily imagined (unless, e.g. one has
just read that almost all irrationals are algebraic); without changing the meaning one
can transform this statement into “π is irrational and π is not algebraic”. So why
use (in a formal text) a formulation that carries vague, emotional undertones? For
these and other reasons (e.g. of economy) we stick in logic to a limited number of
connectives, in particular those that have shown themselves to be useful in the daily
routine of formulating and proving.

Note, however, that even here ambiguities loom. Each of the connectives already
has one or more meanings in natural language. We will give some examples:

1. John drove on and hit a pedestrian.
2. John hit a pedestrian and drove on.
3. If I open the window then we’ll have fresh air.
4. If I open the window then 1+ 3= 4.
5. If 1+ 2= 4, then we’ll have fresh air.
6. John is working or he is at home.
7. Euclid was a Greek or a mathematician.

From 1 and 2 we conclude that “and” may have an ordering function in time. Not
so in mathematics; “π is irrational and 5 is positive” simply means that both parts
are the case. Time just does not play a role in formal mathematics. We could not
very well say “π was neither algebraic nor transcendent before 1882”. What we
would want to say is “before 1882 it was unknown whether π was algebraic or
transcendent”.

In examples 3–5 we consider the implication. Example 3 will be generally ac-
cepted, it displays a feature that we have come to accept as inherent to implication:
there is a relation between the premise and conclusion. This feature is lacking in
examples 4 and 5. Nonetheless we will allow cases such as 4 and 5 in mathematics.
There are various reasons to do so. One is the consideration that meaning should be
left out of syntactical considerations. Otherwise syntax would become unwieldy and
we would run into an esoteric practice of exceptional cases. This general implica-
tion, in use in mathematics, is called material implication. Some other implications
have been studied under the names of strict implication, relevant implication, etc.

Finally 6 and 7 demonstrate the use of “or”. We tend to accept 6 and to reject 7.
One mostly thinks of “or” as something exclusive. In 6 we more or less expect John
not to work at home, while 7 is unusual in the sense that we as a rule do not use “or”
when we could actually use “and”. Also, we normally hesitate to use a disjunction
if we already know which of the two parts is the case, e.g. “32 is a prime or 32 is
not a prime” will be considered artificial (to say the least) by most of us, since we
already know that 32 is not a prime. Yet mathematics freely uses such superfluous
disjunctions, for example “2≥ 2” (which stands for “2 > 2 or 2= 2”).
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In order to provide mathematics with a precise language we will create an arti-
ficial, formal language, which will lend itself to mathematical treatment. First we
will define a language for propositional logic, i.e. the logic which deals only with
propositions (sentences, statements). Later we will extend our treatment to a logic
which also takes properties of individuals into account.

The process of formalization of propositional logic consists of two stages:
(1) present a formal language, (2) specify a procedure for obtaining valid or true
propositions.

We will first describe the language, using the technique of inductive definitions.
The procedure is quite simple: First give the smallest propositions, which are not
decomposable into smaller propositions; next describe how composite propositions
are constructed out of already given propositions.

Definition 2.1.1 The language of propositional logic has an alphabet consisting of

(i) proposition symbols: p0,p1,p2, . . .,
(ii) connectives: ∧,∨,→,¬,↔,⊥,

(iii) auxiliary symbols: ( , ).

The connectives carry traditional names:

∧ – and – conjunction
∨ – or – disjunction
→ – if . . . , then . . . – implication
¬ – not – negation
↔ – iff – equivalence, bi-implication
⊥ – falsity – falsum, absurdum

The proposition symbols and ⊥ stand for the indecomposable propositions,
which we call atoms, or atomic propositions.

Definition 2.1.2 The set PROP of propositions is the smallest set X with the prop-
erties

(i) pi ∈X(i ∈N),⊥∈X,
(ii) ϕ,ψ ∈X⇒ (ϕ ∧ψ), (ϕ ∨ψ), (ϕ→ψ), (ϕ↔ψ) ∈X,

(iii) ϕ ∈X⇒ (¬ϕ) ∈X.

The clauses describe exactly the possible ways of building propositions. In order
to simplify clause (ii) we write ϕ,ψ ∈ X ⇒ (ϕ�ψ) ∈ X, where � is one of the
connectives ∧,∨,→,↔.

A warning to the reader is in order here. We have used Greek letters ϕ,ψ in the
definition; are they propositions? Clearly we did not intend them to be so, as we want
only those strings of symbols obtained by combining symbols of the alphabet in a
correct way. Evidently no Greek letters come in at all! The explanation is that ϕ and
ψ are used as variables for propositions. Since we want to study logic, we must use
a language in which to discuss it. As a rule this language is plain, everyday English.
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We call the language used to discuss logic our meta-language and ϕ and ψ are meta-
variables for propositions. We could do without meta-variables by handling (ii) and
(iii) verbally: if two propositions are given, then a new proposition is obtained by
placing the connective ∧ between them and by adding brackets in front and at the
end, etc. This verbal version should suffice to convince the reader of the advantage
of the mathematical machinery.

Note that we have added a rather unusual connective, ⊥. It is unusual in the
sense that it does not connect anything. Logical constant would be a better name.
For uniformity we stick to our present usage.⊥ is added for convenience; one could
very well do without it, but it has certain advantages. One may note that there is
something lacking, namely a symbol for the true proposition; we will indeed add
another symbol, �, as an abbreviation for the “true” proposition.

Examples

(p7 → p0), ((⊥∨ p32)∧ (¬p2)) ∈ PROP,

p1 ↔ p7, ¬¬⊥, ((→∧ �∈ PROP.

It is easy to show that something belongs to PROP (just carry out the construction
according to Definition 2.1.2); it is somewhat harder to show that something does
not belong to PROP. We will do one example:

¬¬⊥�∈ PROP.

Suppose ¬¬⊥∈X and X satisfies (i), (ii), (iii) of Definition 2.1.2. We claim that
Y = X − {¬¬ ⊥} also satisfies (i), (ii) and (iii). Since ⊥,pi ∈ X, also ⊥,pi ∈ Y .
If ϕ,ψ ∈ Y , then ϕ,ψ ∈ X. Since X satisfies (ii) (ϕ�ψ) ∈ X. From the form of
the expressions it is clear that (ϕ�ψ) �= ¬¬ ⊥ (look at the brackets), so (ϕ�ψ) ∈
X − {¬¬ ⊥} = Y . Likewise one shows that Y satisfies (iii). Hence X is not the
smallest set satisfying (i), (ii) and (iii), so ¬¬⊥ cannot belong to PROP.

Properties of propositions are established by an inductive procedure analogous
to Definition 2.1.2: first deal with the atoms, and then go from the parts to the com-
posite propositions. This is made precise in the following theorem.

Theorem 2.1.3 (Induction Principle) Let A be a property, then A(ϕ) holds for all
ϕ ∈ PROP if

(i) A(pi), for all i, and A(⊥),
(ii) A(ϕ),A(ψ)⇒A((ϕ�ψ)),

(iii) A(ϕ)⇒A((¬ϕ)).

Proof Let X = {ϕ ∈ PROP | A(ϕ)}, then X satisfies (i), (ii) and (iii) of Defini-
tion 2.1.2. So PROP⊆X, i.e. for all ϕ ∈ PROP A(ϕ) holds. �

We call an application of Theorem 2.1.3 a proof by induction on ϕ. The reader
will note an obvious similarity between the above theorem and the principle of com-
plete induction in arithmetic.
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The above procedure for obtaining all propositions, and for proving properties of
propositions is elegant and perspicuous; there is another approach, however, which
has its own advantages (in particular for coding): Consider propositions as the result
of a linear step-by-step construction. For example ( (¬p0)→⊥) is constructed by
assembling it from its basic parts by using previously constructed parts: p0 . . . ⊥
. . . (¬p0) . . . ( (¬p0)→⊥). This is formalized as follows.

Definition 2.1.4 A sequence ϕ0, . . . , ϕn is called a formation sequence of ϕ if
ϕn = ϕ and for all i ≤ n ϕi is atomic, or

ϕi = (ϕj�ϕk) for certain j, k < i, or

ϕi = (¬ϕj ) for certain j < i.

Observe that in this definition we are considering strings ϕ of symbols from the
given alphabet; this mildly abuses our notational convention.

Examples ⊥,p2,p3, (⊥ ∨p2), (¬(⊥ ∨p2)), (¬p3) and p3, (¬p3) are both forma-
tion sequences of (¬p3). Note that formation sequences may contain “garbage”.

We now give some trivial examples of proof by induction. In practice we actually
only verify the clauses of the proof by induction and leave the conclusion to the
reader.

1. Each proposition has an even number of brackets.

Proof

(i) Each atom has 0 brackets and 0 is even.
(ii) Suppose ϕ and ψ have 2n, resp. 2m brackets, then (ϕ�ψ) has 2(n+m+ 1)

brackets.
(iii) Suppose ϕ has 2n brackets, then (¬ϕ) has 2(n+ 1) brackets. �

2. Each proposition has a formation sequence.

Proof

(i) If ϕ is an atom, then the sequence consisting of just ϕ is a formation sequence
of ϕ.

(ii) Let ϕ0, . . . , ϕn and ψ0, . . . ,ψm be formation sequences of ϕ and ψ , then one
easily sees that ϕ0, . . . , ϕn, ψ0, . . . ,ψm, (ϕn�ψm) is a formation sequence of
(ϕ�ψ).

(iii) This is left to the reader. �

We can improve on 2.

Theorem 2.1.5 PROP is the set of all expressions having formation sequences.
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Proof Let F be the set of all expressions (i.e. strings of symbols) having formation
sequences. We have shown above that PROP⊆ F .

Let ϕ have a formation sequence ϕ0, . . . , ϕn, we show ϕ ∈ PROP by induction
on n.

n= 0 : ϕ = ϕ0 and by definition ϕ is atomic, so ϕ ∈ PROP.

Suppose that all expressions with formation sequences of length m < n are in
PROP. By definition ϕn = (ϕi�ϕj ) for i, j < n, or ϕn = (¬ϕi) for i < n, or ϕn

is atomic. In the first case ϕi and ϕj have formation sequences of length i, j < n,
so by the induction hypothesis ϕi,ϕj ∈ PROP. As PROP satisfies the clauses of
Definition 2.1.2, also (ϕi�ϕj ) ∈ PROP. Treat negation likewise. The atomic case is
trivial. Conclusion F ⊆ PROP. �

Theorem 2.1.5 is in a sense a justification of the definition of formation sequence.
It also enables us to establish properties of propositions by ordinary induction on the
length of formation sequences.

In arithmetic one often defines functions by recursion, e.g. exponentiation is
defined by x0 = 1 and xy+1 = xy · x, or the factorial function by 0! = 1 and
(x + 1)! = x! · (x + 1).

The justification is rather immediate: each value is obtained by using the preced-
ing values (for positive arguments). There is an analogous principle in our syntax.

Example The number b(ϕ) of brackets of ϕ, can be defined as follows:
⎧
⎨

⎩

b(ϕ)= 0 for ϕ atomic,
b((ϕ�ψ))= b(ϕ)+ b(ψ)+ 2,

b((¬ϕ))= b(ϕ)+ 2.

The value of b(ϕ) can be computed by successively computing b(ψ) for its sub-
formulas ψ .

We can give this kind of definition for all sets that are defined by induction. The
principle of “definition by recursion” takes the form of “there is a unique function
such that . . . ”. The reader should keep in mind that the basic idea is that one can
“compute” the function value for a composition in a prescribed way from the func-
tion values of the composing parts.

The general principle behind this practice is laid down in the following theorem.

Theorem 2.1.6 (Definition by Recursion) Let mappings H� : A2 → A and
H¬ :A→A be given and let Hat be a mapping from the set of atoms into A, then
there exists exactly one mapping F : PROP→A such that

⎧
⎨

⎩

F(ϕ)=Hat (ϕ) for ϕ atomic,
F ((ϕ�ψ))=H�(F (ϕ),F (ψ)),

F ((¬ϕ))=H¬(F (ϕ)).

In concrete applications it is usually rather easily seen to be a correct principle.
However, in general one has to prove the existence of a unique function satisfying
the above equations. The proof is left as an exercise, cf. Exercise 11.
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Here are some examples of definition by recursion.

1. The (parsing) tree of a proposition ϕ is defined by

T (ϕ) = �ϕ for atomic ϕ

T ((ϕ�ψ)) = � (ϕ�ψ)
�
�

�
�

T (ϕ) T (ψ)

T ((¬ϕ))= � (¬ϕ)

T (ϕ)

Examples

A simpler way to exhibit the trees consists of listing the atoms at the bottom, and
indicating the connectives at the nodes.
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2. The rank r(ϕ) of a proposition ϕ is defined by
⎧
⎨

⎩

r(ϕ)= 0 for atomic ϕ,

r((ϕ�ψ))=max(r(ϕ), r(ψ))+ 1,

r((¬ϕ))= r(ϕ)+ 1.

We now use the technique of definition by recursion to define the notion of subfor-
mula.

Definition 2.1.7 The set of subformulas Sub(ϕ) is given by

Sub(ϕ) = {ϕ} for atomic ϕ

Sub(ϕ1�ϕ2) = Sub(ϕ1)∪ Sub(ϕ2)∪ {ϕ1�ϕ2}
Sub(¬ϕ) = Sub(ϕ)∪ {¬ϕ}.

We say that ψ is a subformula of ϕ if ψ ∈ Sub(ϕ).

Examples p2 is a subformula of ((p7 ∨ (¬p2))→ p1); (p1 →⊥) is a subformula
of (((p2 ∨ (p1 ∧ p0))↔ (p1 →⊥)).

Notational Convention In order to simplify our notation we will economize on
brackets. We will always discard the outermost brackets and we will discard brack-
ets in the case of negations. Furthermore we will use the convention that ∧ and ∨
bind more strongly than→ and↔ (cf. · and+ in arithmetic), and that ¬ binds more
strongly than the other connectives.

Examples

¬ϕ ∨ ϕ stands for ((¬ϕ)∨ ϕ),

¬(¬¬¬ϕ∧⊥) stands for (¬((¬(¬(¬ϕ)))∧⊥)),

ϕ ∨ψ → ϕ stands for ((ϕ ∨ψ)→ ϕ),

ϕ→ ϕ ∨ (ψ → χ) stands for (ϕ→ (ϕ ∨ (ψ → χ))).

Warning Note that those abbreviations are, properly speaking, not propositions.

In the proposition (p1 → p1) only one atom is used to define it; however it is used
twice and it occurs at two places. For some purpose it is convenient to distinguish
between formulas and formula occurrences. Now the definition of subformula does
not tell us what an occurrence of ϕ in ψ is, we have to add some information. One
way to indicate an occurrence of ϕ is to give its place in the tree of ψ , e.g. an
occurrence of a formula in a given formula ψ is a pair (ϕ, k), where k is a node
in the tree of ψ . One might even code k as a sequence of 0’s and 1’s, where we
associate to each node the following sequence: 〈 〉 (the empty sequence) to the top
node, 〈s0, . . . , sn−1,0〉 to the left immediate descendant of the node with sequence
〈s0, . . . , sn−1〉 and 〈s0, . . . , sn−1,1〉 to the second immediate descendant of it (if
there is one). We will not be overly formal in handling occurrences of formulas (or
symbols, for that matter), but it is important that it can be done.
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The introduction of the rank function above is not a mere illustration of the “def-
inition by recursion”, it also allows us to prove facts about propositions by means
of plain complete induction (or mathematical induction). We have, so to speak, re-
duced the tree structure to that of the straight line of natural numbers. Note that
other “measures” will do just as well, e.g. the number of symbols. For completeness
we will spell out the Rank-Induction Principle:

Theorem 2.1.8 (Rank-Induction Principle) If for all ϕ [A(ψ) for all ψ with rank
less than r(ϕ)] ⇒A(ϕ), then A(ϕ) holds for all ϕ ∈ PROP.

Let us show that induction on ϕ and induction on the rank of ϕ are equivalent.1

First we introduce a convenient notation for the rank induction: write ϕ ≺ ψ

(ϕ � ψ ) for r(ϕ) < r(ψ) (r(ϕ) ≤ r(ψ)). So ∀ψ � ϕA(ψ) stands for “A(ψ) holds
for all ψ with rank at most r(ϕ)”.

The Rank-Induction Principle now reads

∀ϕ(∀ψ ≺ ϕA(ψ)⇒A(ϕ))⇒∀ϕA(ϕ)

We will now show that the rank-induction principle follows from the induction prin-
ciple. Let

∀ϕ(∀ψ ≺ ϕA(ψ)⇒A(ϕ)) (2.1)

be given. In order to show ∀ϕA(ϕ) we will indulge in a bit of induction loading. Put
B(ϕ) := ∀ψ � ϕA(ψ). Now show ∀ϕB(ϕ) by induction on ϕ.

1. For atomic ϕ ∀ψ ≺ ϕA(ψ) is vacuously true, hence by (2.1) A(ϕ) holds. There-
fore A(ψ) holds for all ψ with rank ≤ 0. So B(ϕ).

2. ϕ = ϕ1�ϕ2. Induction hypothesis: B(ϕ1),B(ϕ2). Let ρ be any proposition
with r(ρ) = r(ϕ) = n + 1 (for a suitable n). We have to show that ρ and
all propositions with rank less than n + 1 have the property A. Since r(ϕ) =
max(r(ϕ1), r(ϕ2))+ 1, one of ϕ1 and ϕ2 has rank n—say ϕ1. Now pick an ar-
bitrary ψ with r(ψ)≤ n, then ψ � ϕ1. Therefore, by B(ϕ1), A(ψ). This shows
that ∀ψ ≺ ρA(ψ), so by (2.1) A(ρ) holds. This shows B(ϕ).

3. ϕ =¬ϕ1. Similar argument.

An application of the induction principle yields ∀ϕB(ϕ), and as a consequence
∀ϕA(ϕ).

Conversely, the rank-induction principle implies the induction principle. We as-
sume the premises of the induction principle. In order to apply the rank-induction
principle we have to show (2.1). Now pick an arbitrary ϕ; there are three cases:

1. ϕ atomic. Then (2.1) holds trivially.
2. ϕ = ϕ1�ϕ2. Then ϕ1, ϕ2 ≺ ϕ (see Exercise 6). Our assumption is ∀ψ ≺ ϕA(ψ),

so A(ϕ1) and A(ϕ2). Therefore A(ϕ).
3. ϕ =¬ϕ1. Similar argument.

This establishes (2.1). So by rank induction we get ∀ϕA(ϕ).

1The reader may skip this proof at first reading. He will do well to apply induction on rank naively.
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Exercises

1. Give formation sequences of

(¬p2 → (p3 ∨ (p1 ↔ p2)))∧¬p3,

(p7 →¬⊥)↔ ((p4 ∧¬p2)→ p1),

(((p1 → p2)→ p1)→ p2)→ p1.

2. Show that ((→�∈ PROP.
3. Show that the relation “is a subformula of” is transitive.
4. Let ϕ be a subformula of ψ . Show that ϕ occurs in each formation sequence of

ψ .
5. If ϕ occurs in a shortest formation sequence of ψ then ϕ is a subformula of ψ .
6. Let r be the rank function.

(a) Show that r(ϕ)≤ number of occurrences of connectives of ϕ.
(b) Give examples of ϕ such that < or = holds in (a).
(c) Find the rank of the propositions in Exercise 1.
(d) Show that r(ϕ) < r(ψ) if ϕ is a proper subformula of ψ .

7. (a) Determine the trees of the propositions in Exercise 1.
(b) Determine the propositions with the following trees.

8. Let #(T (ϕ)) be the number of nodes of T (ϕ). By the “number of connectives
in ϕ” we mean the number of occurrences of connectives in ϕ. (In general #(A)

stands for the number of elements of a (finite) set A.)
(a) If ϕ does not contain ⊥, show: number of connectives of ϕ + number of

atoms of ϕ ≤ #(T (ϕ)).
(b) #(sub(ϕ))≤ #(T (ϕ)).
(c) A branch of a tree is a maximal linearly ordered set.

The length of a branch is the number of its nodes minus one. Show that
r(ϕ) is the length of a longest branch in T (ϕ).

(d) Let ϕ not contain ⊥. Show: the number of connectives in ϕ + the number
of atoms of ϕ ≤ 2r(ϕ)+1 − 1.

9. Show that a proposition with n connectives has at most 2n+ 1 subformulas.
10. Show that for PROP we have a unique decomposition theorem: for each non-

atomic proposition σ either there are two propositions ϕ and ψ such that
σ = ϕ�ψ , or there is a proposition ϕ such that σ =¬ϕ.

11. (a) Give an inductive definition of the function F , defined by recursion on
PROP from the functions Hat , H�, H¬, as a set F ∗ of pairs.



2.2 Semantics 15

(b) Formulate and prove for F ∗ the induction principle.
(c) Prove that F ∗ is indeed a function on PROP.
(d) Prove that it is the unique function on PROP satisfying the recursion equa-

tions.

2.2 Semantics

The task of interpreting propositional logic is simplified by the fact that the entities
considered have a simple structure. The propositions are built up from rough blocks
by adding connectives.

The simplest parts (atoms) are of the form “grass is green”, “Mary likes Goethe”,
“6− 3= 2”, which are simply true or false. We extend this assignment of truth val-
ues to composite propositions, by reflection on the meaning of the logical connec-
tives.

Let us agree to use 1 and 0 instead of “true” and “false”. The problem we are
faced with is how to interpret ϕ�ψ, ¬ϕ, given the truth values of ϕ and ψ .

We will illustrate the solution by considering the in-out table for Messrs. Smith
and Jones.

Conjunction A visitor who wants to see both Smith and Jones wants the table to be
in the position shown here, i.e.

in out
Smith ×
Jones ×

“Smith is in”∧ “Jones is in” is true iff
“Smith is in” is true and “Jones is in” is true.

We write v(ϕ) = 1 (resp. 0) for “ϕ is true” (resp. false). Then the above con-
sideration can be stated as v(ϕ ∧ ψ) = 1 iff v(ϕ) = v(ψ) = 1, or v(ϕ ∧ ψ) =
min(v(ϕ), v(ψ)).

One can also write it in the form of a truth table:

∧ 0 1
0 0 0
1 0 1

One reads the truth table as follows: the first argument is taken from the leftmost
column and the second argument is taken from the top row.

Disjunction If a visitor wants to see one of the partners, no matter which one, he
wants the table to be in one of the positions

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

In the last case he can make a choice, but that is no problem; he wants to see at
least one of the gentlemen, no matter which one.
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In our notation, the interpretation of ∨ is given by

v(ϕ ∨ψ)= 1 iff v(ϕ)= 1 or v(ψ)= 1.

Shorter: v(ϕ ∨ψ)=max(v(ϕ), v(ψ)).
In truth table form:

∨ 0 1
0 0 1
1 1 1

Negation The visitor who is solely interested in our Smith will state that “Smith is
not in” if the table is in the position:

in out
Smith ×

So “Smith is not in” is true if “Smith is in” is false. We write this as v(¬ϕ)= 1
iff v(ϕ)= 0, or v(¬ϕ)= 1− v(ϕ).

In truth table form:

¬
0 1
1 0

Implication Our legendary visitor has been informed that “Jones is in if Smith is
in”. Now he can at least predict the following positions of the table:

in out
Smith ×
Jones ×

in out
Smith ×
Jones ×

If the table is in the position

in out
Smith ×
Jones ×

then he knows that the information was false.
The remaining case,

in out
Smith ×
Jones ×

cannot be dealt with in such a simple way. There evidently is no reason to consider
the information false, rather “not very helpful”, or “irrelevant”. However, we have
committed ourselves to the position that each statement is true or false, so we decide
to call “If Smith is in, then Jones is in” true also in this particular case. The reader
should realize that we have made a deliberate choice here; a choice that will prove a
happy one in view of the elegance of the system that results. There is no compelling
reason, however, to stick to the notion of implication that we just introduced. Various
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other notions have been studied in the literature; for mathematical purposes our
notion (also called “material implication”) is, however, perfectly suitable.

Note that there is just one case in which an implication is false (see the truth
table below), and one should keep this observation in mind for future application —
it helps to cut down calculations.

In our notation the interpretation of implication is given by v(ϕ → ψ) = 0 iff
v(ϕ)= 1 and v(ψ)= 0.

Its truth table is:

→ 0 1
0 1 1
1 0 1

Equivalence If our visitor knows that “Smith is in if and only if Jones is in”,
then he knows that they are either both in, or both out. Hence v(ϕ ↔ ψ) = 1 iff
v(ϕ)= v(ψ).

The truth table of ↔ is:

↔ 0 1
0 1 0
1 0 1

Falsum An absurdity, such as “0 �= 0”, “some odd numbers are even”, “I am not
myself”, cannot be true. So we put v(⊥)= 0.

Strictly speaking we should add one more truth table, i.e. the table for �, the
opposite of falsum.

Verum This symbol stands for a manifestly true proposition such as 1= 1; we put
v(�)= 1 for all v.

We collect the foregoing in the following definition.

Definition 2.2.1 A mapping v : PROP→{0,1} is a valuation if

v(ϕ ∧ψ)=min(v(ϕ), v(ψ)),

v(ϕ ∨ψ)=max(v(ϕ), v(ψ)),

v(ϕ→ψ)= 0 ⇔ v(ϕ)= 1 and v(ψ)= 0,

v(ϕ↔ψ)= 1 ⇔ v(ϕ)= v(ψ),

v(¬ϕ)= 1− v(ϕ)

v(⊥)= 0.

If a valuation is only given for atoms then it is, by virtue of the definition by
recursion, possible to extend it to all propositions. Hence we get the following.

Theorem 2.2.2 If v is a mapping from the atoms into {0,1}, satisfying v(⊥) = 0,
then there exists a unique valuation �·�v , such that �ϕ�v = v(ϕ) for atomic ϕ.
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It has become common practice to denote valuations as defined above by �ϕ�, so
we will adopt this notation. Since �·� is completely determined by its values on the
atoms, �ϕ� is often denoted by �ϕ�v . Whenever there is no confusion we will delete
the index v.

Theorem 2.2.2 tells us that each of the mappings v and �·�v determines the other
one uniquely, therefore we also call v a valuation (or an atomic valuation, if neces-
sary). From this theorem it appears that there are many valuations (cf. Exercise 4).

It is also obvious that the value �ϕ�v of ϕ under v only depends on the values of
v on its atomic subformulas.

Lemma 2.2.3 If v(pi)= v′(pi) for all pi occurring in ϕ, then �ϕ�v = �ϕ�v′ .

Proof An easy induction on ϕ. �

An important subset of PROP is that of all propositions ϕ which are always true,
i.e. true under all valuations.

Definition 2.2.4

(i) ϕ is a tautology if �ϕ�v = 1 for all valuations v.
(ii) |� ϕ stands for “ϕ is a tautology”.

(iii) Let Γ be a set of propositions, then Γ |� ϕ iff for all v: (�ψ �v = 1 for all
ψ ∈ Γ )⇒ �ϕ�v = 1.

In words: Γ |� ϕ holds iff ϕ is true under all valuations that make all ψ in Γ

true. We say that ϕ is a semantical consequence of Γ . We write Γ �|� ϕ if Γ |� ϕ is
not the case.

Convention ϕ1, . . . , ϕn |�ψ stands for {ϕ1, . . . , ϕn} |�ψ .

Note that “�ϕ�v = 1 for all v” is another way of saying “�ϕ� = 1 for all valua-
tions”.

Examples
(i) |� ϕ→ ϕ; |� ¬¬ϕ→ ϕ; |� ϕ ∨ψ ↔ψ ∨ ϕ,

(ii) ϕ,ψ |� ϕ ∧ψ; ϕ,ϕ→ψ |�ψ; ϕ→ψ, ¬ψ |� ¬ϕ.

One often has to substitute propositions for subformulas; it turns out to be suffi-
cient to define substitution for atoms only.

We write ϕ[ψ/pi] for the proposition obtained by replacing all occurrences of pi

in ϕ by ψ . As a matter of fact, substitution of ψ for pi defines a mapping of PROP
into PROP, which can be given by recursion (on ϕ).

Definition 2.2.5

ϕ[ψ/pi] =
{

ϕ if ϕ atomic and ϕ �= pi

ψ if ϕ = pi
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(ϕ1�ϕ2)[ψ/pi] = ϕ1[ψ/pi]�ϕ2[ψ/pi]
(¬ϕ)[ψ/pi] = ¬ϕ[ψ/pi].

The following theorem spells out the basic property of the substitution of equiv-
alent propositions.

Theorem 2.2.6 (Substitution Theorem) If |� ϕ1 ↔ ϕ2, then |� ψ[ϕ1/p] ↔
ψ[ϕ2/p], where p is an atom.

The substitution theorem is actually a consequence of a slightly stronger one.

Lemma 2.2.7 �ϕ1 ↔ ϕ2 �v ≤ �ψ[ϕ1/p] ↔ ψ[ϕ2/p]�v and |� (ϕ1 ↔ ϕ2) →
(ψ[ϕ1/p] ↔ψ[ϕ2/p]).

Proof Induction on ψ . We only have to consider �ϕ1 ↔ ϕ2 �v = 1 (why?).

• ψ atomic. If ψ = p, then ψ[ϕi/p] = ϕi and the result follows immediately. If
ψ �= p, then ψ[ϕi/p] =ψ , and �ψ[ϕ1/p] ↔ψ[ϕ2/p]�v = �ψ ↔ψ �v = 1.

• ψ = ψ1�ψ2. Induction hypothesis: �ψi[ϕ1/p]�v = �ψi[ϕ2/p]�v . Now the value
of �(ψ1�ψ2)[ϕi/p]�v = �ψ1[ϕi/p]�ψ2[ϕi/p]�v is uniquely determined by its
parts �ψj [ϕi/p]�v , hence �(ψ1�ψ2)[ϕ1/p]�v = �(ψ1�ψ2)[ϕ2/p]�v .

• ψ =¬ψ1. Left to the reader.

The proof of the second part essentially uses the fact that |� ϕ → ψ iff
�ϕ�v ≤ �ψ �v for all v (cf. Exercise 6). �

The proof of the substitution theorem now immediately follows. �

The substitution theorem says in plain English that parts may be replaced by
equivalent parts.

There are various techniques for testing tautologies. One such (rather slow) tech-
nique uses truth tables. We give one example:

(ϕ→ψ)↔ (¬ψ →¬ϕ)

ϕ ψ ¬ϕ ¬ψ ϕ→ψ ¬ψ →¬ϕ (ϕ→ψ)↔ (¬ψ →¬ϕ)

0 0 1 1 1 1 1
0 1 1 0 1 1 1
1 0 0 1 0 0 1
1 1 0 0 1 1 1

The last column consists of 1’s only. Since, by Lemma 2.2.3 only the values of ϕ

and ψ are relevant, we had to check 22 cases. If there are n (atomic) parts we need
2n lines.

One can compress the above table a bit, by writing it in the following form:
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(ϕ → ψ) ↔ (¬ψ → ¬ϕ)

0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 1 1 0 0
1 1 1 1 0 1 0

Let us make one more remark about the role of the two 0-ary connectives,
⊥ and �. Clearly, |� � ↔ (⊥→⊥), so we can define � from ⊥. On the other
hand, we cannot define ⊥ from � and →; we note that from � we can never get
anything but a proposition equivalent to � by using ∧,∨,→, but from ⊥ we can
generate ⊥ and � by applying ∧,∨,→.

Exercises

1. Check by the truth table method which of the following propositions are tautolo-
gies:
(a) (¬ϕ ∨ψ)↔ (ψ → ϕ),
(b) ϕ→ ((ψ → σ)→ ((ϕ→ψ)→ (ϕ→ σ))),
(c) (ϕ→¬ϕ)↔¬ϕ,
(d) ¬(ϕ→¬ϕ),
(e) (ϕ→ (ψ → σ))↔ ((ϕ ∧ψ)→ σ),
(f) ϕ ∨¬ϕ (principle of the excluded third),
(g) ⊥↔ (ϕ ∧¬ϕ),
(h) ⊥→ ϕ (ex falso sequitur quodlibet).

2. Show
(a) ϕ |� ϕ,
(b) ϕ |�ψ and ψ |� σ ⇒ ϕ |� σ ,
(c) |� ϕ→ψ ⇔ ϕ |�ψ .

3. Determine ϕ[¬p0 → p3/p0] for ϕ = p1 ∧ p0 → (p0 → p3); ϕ = (p3 ↔ p0) ∨
(p2 →¬p0).

4. Show that there are 2ℵ0 valuations.
5. Show

�ϕ ∧ψ �v = �ϕ�v · �ψ �v,

�ϕ ∨ψ �v = �ϕ�v + �ψ �v − �ϕ�v · �ψ �v,

�ϕ→ψ �v = 1− �ϕ�v + �ϕ�v · �ψ �v,

�ϕ↔ψ �v = 1− |�ϕ�v − �ψ �v|.
6. Show �ϕ→ψ �v = 1⇔ �ϕ�v ≤ �ψ �v .

2.3 Some Properties of Propositional Logic

On the basis of the previous sections we can already prove a lot of theorems about
propositional logic. One of the earliest discoveries in modern propositional logic
was its similarity with algebras.
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Following Boole, an extensive study of the algebraic properties was made by a
number of logicians. The purely algebraic aspects have since then been studied in
Boolean algebra.

We will just mention a few of those algebraic laws.

Theorem 2.3.1 The following propositions are tautologies:

(ϕ ∨ψ)∨ σ ↔ ϕ ∨ (ψ ∨ σ) (ϕ ∧ψ)∧ σ ↔ ϕ ∧ (ψ ∧ σ)

associativity

ϕ ∨ψ ↔ψ ∨ ϕ ϕ ∧ψ ↔ψ ∧ ϕ

commutativity

ϕ ∨ (ψ ∧ σ)↔ (ϕ ∨ψ)∧ (ϕ ∨ σ) ϕ ∧ (ψ ∨ σ)↔ (ϕ ∧ψ)∨ (ϕ ∧ σ)

distributivity

¬(ϕ ∨ψ)↔¬ϕ ∧¬ψ ¬(ϕ ∧ψ)↔¬ϕ ∨¬ψ

De Morgan’s laws

ϕ ∨ ϕ↔ ϕ ϕ ∧ ϕ↔ ϕ

idempotency

¬¬ϕ↔ ϕ

double negation law

Proof Check the truth tables or do a little computation. For example, De Morgan’s
law: �¬(ϕ ∨ ψ)� = 1⇔ �ϕ ∨ ψ � = 0⇔ �ϕ� = �ψ � = 0⇔ �¬ϕ� = �¬ψ � = 1⇔
�¬ϕ ∧¬ψ � = 1.

So �¬(ϕ ∨ψ)� = �¬ϕ ∧¬ψ � for all valuations, i.e. |� ¬(ϕ ∨ψ)↔¬ϕ ∧¬ψ .
The remaining tautologies are left to the reader. �

In order to apply the previous theorem in “logical calculations” we need a few
more equivalences. This is demonstrated in the simple equivalence |� ϕ ∧ (ϕ ∨
ψ)↔ ϕ (an exercise for the reader). For, by the distributive law |� ϕ ∧ (ϕ ∨ψ)↔
(ϕ ∧ ϕ)∨ (ϕ ∧ψ) and |� (ϕ ∧ ϕ) ∨ (ϕ ∧ψ)↔ ϕ ∨ (ϕ ∧ψ), by idempotency and
the substitution theorem. So |� ϕ ∧ (ϕ ∨ψ)↔ ϕ ∨ (ϕ ∧ψ). Another application of
the distributive law will bring us back to start, so just applying the above laws will
not eliminate ψ !

Therefore, we list a few more convenient properties.

Lemma 2.3.2 If |� ϕ→ψ , then

|� ϕ ∧ψ ↔ ϕ and
|� ϕ ∨ψ ↔ψ

Proof By Exercise 6 of Sect. 2.2 |� ϕ → ψ implies �ϕ�v ≤ �ψ �v for all v. So
�ϕ ∧ψ �v =min(�ϕ�v, �ψ �v)= �ϕ�v and �ϕ ∨ψ �v =max(�ϕ�v, �ψ �v)= �ψ �v for
all v. �
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Lemma 2.3.3

(a) |� ϕ⇒|� ϕ ∧ψ ↔ψ ,
(b) |� ϕ⇒|�¬ϕ ∨ψ ↔ψ ,
(c) |� ⊥ ∨ ψ ↔ψ ,
(d) |� �∧ψ ↔ψ .

Proof Left to the reader. �

The following theorem establishes some equivalences involving various connec-
tives. It tells us that we can “define” up to logical equivalence all connectives in
terms of {∨,¬}, or {→,¬}, or {∧,¬}, or {→,⊥}.

That is, we can find e.g. a proposition involving only∨ and¬, which is equivalent
to ϕ↔ψ , etc.

Theorem 2.3.4

(a) |� (ϕ↔ψ)↔ (ϕ→ψ)∧ (ψ → ϕ),
(b) |� (ϕ→ψ)↔ (¬ϕ ∨ψ),
(c) |� ϕ ∨ψ ↔ (¬ϕ→ψ),
(d) |� ϕ ∨ψ ↔¬(¬ϕ ∧¬ψ),
(e) |� ϕ ∧ψ ↔¬(¬ϕ ∨¬ψ),
(f) |� ¬ϕ↔ (ϕ→⊥),
(g) |� ⊥↔ ϕ ∧¬ϕ.

Proof Compute the truth values of the left-hand and right-hand sides. �

We now have enough material to handle logic as if it were algebra. For conve-
nience we write ϕ ≈ψ for |� ϕ↔ψ .

Lemma 2.3.5 ≈ is an equivalence relation on PROP, i.e.

ϕ ≈ ϕ (reflexivity),
ϕ ≈ ψ ⇒ ψ ≈ ϕ (symmetry),
ϕ ≈ ψ and ψ ≈ σ ⇒ ϕ ≈ σ (transitivity).

Proof Use |� ϕ↔ψ iff �ϕ�v = �ψ �v for all v. �

We give some examples of algebraic computations, which establish a chain of
equivalences.
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1. |� [ϕ→ (ψ → σ)] ↔ [ϕ ∧ψ → σ ],
ϕ→ (ψ → σ) ≈ ¬ϕ ∨ (ψ → σ), (Theorem 2.3.4(b))

¬ϕ ∨ (ψ → σ) ≈ ¬ϕ ∨ (¬ψ ∨ σ), (Theorem 2.3.4(b) and Subst. Thm.)

¬ϕ ∨ (¬ψ ∨ σ) ≈ (¬ϕ ∨¬ψ)∨ σ, (ass.)

(¬ϕ ∨¬ψ)∨ σ ≈ ¬(ϕ ∧ψ)∨ σ, (De Morgan and Subst. Thm.)

¬(ϕ ∧ψ)∨ σ ≈ (ϕ ∧ψ)→ σ, (Theorem 2.3.4(b))

So ϕ→ (ψ → σ) ≈ (ϕ ∧ψ)→ σ.

We now leave out the references to the facts used, and make one long string. We
just calculate until we reach a tautology.

2. |� (ϕ→ψ)↔ (¬ψ →¬ϕ),
¬ψ →¬ϕ ≈¬¬ψ ∨¬ϕ ≈ψ ∨¬ϕ ≈¬ϕ ∨ψ ≈ ϕ→ψ

3. |� ϕ→ (ψ → ϕ),
ϕ→ (ψ → ϕ)≈¬ϕ ∨ (¬ψ ∨ ϕ)≈ (¬ϕ ∨ ϕ)∨¬ψ .

We have seen that ∨ and ∧ are associative, therefore we adopt the convention,
also used in algebra, to delete brackets in iterated disjunctions and conjunctions; i.e.
we write ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4, etc. This is all right, since no matter how we restore
(syntactically correctly) the brackets, the resulting formula is determined uniquely
up to equivalence.

Have we introduced all connectives so far? Obviously not. We can easily invent
new ones. Here is a famous one, introduced by Sheffer: ϕ|ψ stands for “not both ϕ

and ψ”. More precise: ϕ|ψ is given by the following truth table:
Sheffer stroke

| 0 1
0 1 1
1 1 0

Let us say that an n-ary logical connective $ is defined by its truth table, or by its
valuation function, if �$(p1, . . . , pn)� = f (�p1 �, . . . , �pn�) for some function f .

Although we can apparently introduce many new connectives in this way, there
are no surprises in stock for us, as all of those connectives are definable in terms of
∨ and ¬.

Theorem 2.3.6 For each n-ary connective $ defined by its valuation function,
there is a proposition τ , containing only p1, . . . , pn, ∨ and ¬, such that |� τ ↔
$(p1, . . . , pn).

Proof Induction on n. For n= 1 there are 4 possible connectives with truth tables

$1
0 0
1 0

$2
0 1
1 1

$3
0 0
1 1

$4
0 1
1 0

One easily checks that the propositions ¬(p ∨ ¬p), p ∨ ¬p, p and ¬p will meet
the requirements.
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Suppose that for all n-ary connectives propositions have been found.
Consider $(p1, . . . , pn,pn+1) with truth table:

p1 p2 . . . pn pn+1 $(p1, . . . , pn,pn+1)

0 0 0 0 i1
. . 0 1 i2
. 0 1 . .
. 1 1 . .
0 . . . .
. 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 . . .
. . . . .
. . . . .
. 0 . . .
. 1 0 . .
. . 0 . .
1 . 1 0 .
. . 1 1 i2n+1

where ik ≤ 1.

We consider two auxiliary connectives $1 and $2 defined by

$1(p2, . . . , pn+1)= $(⊥,p2, . . . , pn+1) and

$2(p2, . . . , pn+1)= $(�,p2, . . . , pn+1), where �=¬⊥
(as given by the upper and lower halves of the above table).

By the induction hypothesis there are propositions σ1 and σ2, containing only
p2, . . . , pn+1, ∨ and ¬ so that |� $i (p2, . . . , pn+1)↔ σi .

From those two propositions we can construct the proposition τ :

[τ := (p1 → σ2)∧ (¬p1 → σ1).

Claim |� $(p1, . . . , pn+1)↔ τ .

If �p1 �v = 0, then �p1 → σ2 �v = 1, so �τ �v = �¬p1 → σ1 �v = �σ1 �v =
�$1(p2, . . . , pn+1)�v = �$(p1,p2, . . . , pn+1)�v , using �p1 �v = 0= � ⊥�v .

The case �p1 �v = 1 is similar.
Now expressing → and ∧ in terms of ∨ and ¬ (2.3.4), we have �τ ′� =

�$(p1, . . . , pn+1)� for all valuations (another use of Lemma 2.3.5), where τ ′ ≈ τ

and τ ′ contains only the connectives ∨ and ¬. �

For another solution see Exercise 7.
The above theorem and Theorem 2.3.4 are pragmatic justifications for our choice

of the truth table for →: we get an extremely elegant and useful theory. Theo-
rem 2.3.6 is usually expressed by saying that ∨ and ¬ form a functionally complete
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set of connectives. Likewise ∧,¬ and →,¬ and ⊥,→ form functionally complete
sets.

In analogy to the
∑

and
∏

from algebra we introduce finite disjunctions and
conjunctions.

Definition 2.3.7
{∧∧

i≤0 ϕi = ϕ0
∧∧

i≤n+1 ϕi =∧∧
i≤n ϕi ∧ ϕn+1

{∨∨
i≤0 ϕi = ϕ0

∨∨
i≤n+1 ϕi =∨∨

i≤n ϕi ∨ ϕn+1

Definition 2.3.8 If ϕ =∧∧
i≤n

∨∨
j≤mi

ϕij , where ϕij is atomic or the negation of an
atom, then ϕ is a conjunctive normal form. If ϕ =∨∨

i≤n

∧∧
j≤mi

ϕij , where ϕij is
atomic or the negation of an atom, then ϕ is a disjunctive normal form.

The normal forms are analogous to the well-known normal forms in algebra:
ax2+ byx is “normal”, whereas x(ax+ by) is not. One can obtain normal forms by
simply “multiplying”, i.e. repeated application of distributive laws. In algebra there
is only one “normal form”; in logic there is a certain duality between ∧ and ∨, so
that we have two normal form theorems.

Theorem 2.3.9 For each ϕ there are conjunctive normal forms ϕ∧ and disjunctive
normal forms ϕ∨, such that |� ϕ↔ ϕ∧ and |� ϕ↔ ϕ∨.

Proof First eliminate all connectives other than ⊥,∧,∨ and ¬. Then prove the the-
orem by induction on the resulting proposition in the restricted language of ⊥,∧,∨
and ¬. In fact, ⊥ plays no role in this setting; it could just as well be ignored.

(a) ϕ is atomic. Then ϕ∧ = ϕ∨ = ϕ.
(b) ϕ = ψ ∧ σ . Then ϕ∧ = ψ∧ ∧ σ∧. In order to obtain a disjunctive normal form

we consider ψ∨ =∨∨
ψi , σ∨ =∨∨

σj , where the ψi ’s and σj ’s are conjunctions
of atoms and negations of atoms.

Now ϕ =ψ ∧ σ ≈ψ∨ ∧ σ∨ ≈∨∨
i,j (ψi ∧ σj ).

The last proposition is in normal form, so we equate ϕ∨ to it.

(c) ϕ =ψ ∨ σ . Similar to (b).
(d) ϕ =¬ψ . By the induction hypothesis ψ has normal forms ψ∨ and ψ∧. ¬ψ ≈

¬ψ∧ ≈ ¬∨∨∧∧
ψij ≈ ∧∧∨∨¬ψij ≈ ∧∧∨∨

ψ ′ij , where ψ ′ij = ¬ψij if ψij is
atomic, and ψij = ¬ψ ′ij if ψij is the negation of an atom. (Observe ¬¬ψij ≈
ψij .) Clearly

∧∧∨∨
ψ ′ij is a conjunctive normal form for ϕ. The disjunctive

normal form is left to the reader.

For another proof of the normal form theorems see Exercise 7. �

When looking at the algebra of logic in Theorem 2.3.1, we saw that ∨ and ∧
behaved in a very similar way, to the extent that the same laws hold for both. We
will make this “duality” precise. For this purpose we consider a language with only
the connectives ∨, ∧ and ¬.
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Definition 2.3.10 Define an auxiliary mapping ∗ : PROP→ PROP recursively by

ϕ∗ = ¬ϕ if ϕ is atomic,

(ϕ ∧ψ)∗ = ϕ∗ ∨ψ∗,
(ϕ ∨ψ)∗ = ϕ∗ ∧ψ∗,

(¬ϕ)∗ = ¬ϕ∗.

Example ((p0∧¬p1)∨p2)
∗ = (p0∧¬p1)

∗∧p∗2 = (p∗0∨(¬p1)
∗)∧¬p2 = (¬p0∨

¬p∗1)∧¬p2 = (¬p0 ∨¬¬p1)∧¬p2 ≈ (¬p0 ∨ p1)∧¬p2.

Note that the effect of the ∗-translation boils down to taking the negation and
applying De Morgan’s laws.

Lemma 2.3.11 �ϕ∗� = �¬ϕ�.

Proof Induction on ϕ. For atomic ϕ �ϕ∗� = �¬ϕ�. �(ϕ ∧ ψ)∗� = �ϕ∗ ∨ ψ∗� =
�¬ϕ ∨¬ψ �)= �¬(ϕ ∧ψ)�). �(ϕ ∨ψ)∗� and �(¬ϕ)∗� are left to the reader. �

Corollary 2.3.12 |� ϕ∗ ↔¬ϕ.

Proof The proof is immediate from Lemma 2.3.11. �

So far this is not the proper duality we have been looking for. We really just want
to interchange ∧ and ∨. So we introduce a new translation.

Definition 2.3.13 The duality mapping d : PROP→ PROP is recursively defined
by

ϕd = ϕ for ϕ atomic,

(ϕ ∧ψ)d = ϕd ∨ψd,

(ϕ ∨ψ)d = ϕd ∧ψd,

(¬ϕ)d =¬ϕd.

Theorem 2.3.14 (Duality Theorem) |� ϕ↔ψ ⇔ |� ϕd ↔ψd .

Proof We use the ∗-translation as an intermediate step. Let us introduce the notion
of simultaneous substitution to simplify the proof.

σ [τ0, . . . , τn/p0, . . . , pn] is obtained by substituting τi for pi for all i ≤ n si-
multaneously (see Exercise 15). Observe that ϕ∗ = ϕd [¬p0, . . . ,¬pn/p0, . . . , pn],
so ϕ∗[¬p0, . . . ,¬pn/p0, . . . , pn] = ϕd [¬¬p0, . . . ,¬¬pn/p0, . . . , pn], where the
atoms of ϕ occur among the p0, . . . , pn.

By the Substitution Theorem |� ϕd ↔ ϕ∗[¬p0, . . . ,¬pn/p0, . . . , pn]. The same
equivalence holds for ψ .
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By Corollary 2.3.12 |� ϕ∗ ↔ ¬ϕ, |� ψ∗ ↔ ¬ψ . Since |� ϕ ↔ ψ , also |�
¬ϕ↔¬ψ . Hence |� ϕ∗ ↔ ψ∗, and therefore |� ϕ∗[¬p0, . . . ,¬pn/p0, . . . , pn] ↔
ψ∗[¬p0, . . . ,¬pn/p0, . . . , pn].

Using the above relation between ϕd and ϕ∗ we now obtain |� ϕd ↔ ψd . The
converse follows immediately, as ϕdd = ϕ. �

The Duality Theorem gives us one identity for free for each identity we establish.

Exercises

1. Show by “algebraic” means:

|� (ϕ→ψ)↔ (¬ψ →¬ϕ), contraposition,

|� (ϕ→ψ)∧ (ψ → σ)→ (ϕ→ σ), transitivity of →,

|� (ϕ→ (ψ ∧¬ψ))→¬ϕ,

|� (ϕ→¬ϕ)→¬ϕ,

|� ¬(ϕ ∧¬ϕ),

|� ϕ→ (ψ → ϕ ∧ψ),

|� ((ϕ→ψ)→ ϕ)→ ϕ, Peirce’s law.

2. Simplify the following propositions (i.e. find a simpler equivalent proposition):

(a) (ϕ→ψ)∧ ϕ, (b) (ϕ→ψ)∨¬ϕ, (c) (ϕ→ψ)→ψ,

(d) ϕ→ (ϕ ∧ψ), (e) (ϕ ∧ψ)∨ ϕ, (f) (ϕ→ψ)→ ϕ.

3. Show that {¬ } is not a functionally complete set of connectives. Idem for
{→,∨} (hint: show that for each formula ϕ with only → and ∨ there is a valu-
ation v such that �ϕ�v = 1).

4. Show that the Sheffer stroke, |, forms a functionally complete set (hint:
|� ¬ϕ↔ ϕ | ϕ).

5. Show that the connective ↓ (ϕ nor ψ ), with valuation function �ϕ↓ψ � = 1 iff
�ϕ� = �ψ � = 0, forms a functionally complete set.

6. Show that | and ↓ are the only binary connectives $ such that {$} is functionally
complete.

7. The functional completeness of {∨,¬} can be shown in an alternative way.
Let $ be an n-ary connective with valuation function �$(p1, . . . , pn)� =
f (�p1 �, . . . , �pn�). We want a proposition τ (in ∨,¬) such that �τ � =
f (�p1 �, . . . , �pn�).

Suppose f (�p1 �, . . . , �pn�)= 1 at least once. Consider all tuples (�p1 �, . . . ,
�pn�) with f (�p1 �, . . . , �pn�) = 1 and form corresponding conjunctions p̄1 ∧
p̄2 ∧ · · · ∧ p̄n such that p̄i = pi if �pi � = 1, p̄i = ¬pi if �pi � = 0. Then show
|� (p̄1

1 ∧ p̄1
2 ∧ · · · ∧ p̄1

n) ∨ · · · ∨ (p̄k
1 ∧ p̄k

2 ∧ · · · ∧ p̄k
n)↔ $(p1, . . . , pn), where

the disjunction is taken over all n-tuples such that f (�p1 �, . . . , �pn�)= 1.
Alternatively, we can consider the tuples for which f (�p1 �, . . . , �pn�) = 0.

Carry out the details. Note that this proof of the functional completeness at the
same time proves the normal form theorems.
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8. Let the ternary connective $ be defined by �$(ϕ1, ϕ2, ϕ3)� = 1⇔ �ϕ1 �+ �ϕ2 �+
�ϕ3 � ≥ 2 (the majority connective). Express $ in terms of ∨ and ¬.

9. Let the binary connective # be defined by

# 0 1
0 0 1
1 1 0

Express # in terms of ∨ and ¬.
10. Determine conjunctive and disjunctive normal forms for ¬(ϕ ↔ ψ),

((ϕ→ψ)→ψ)→ψ , (ϕ→ (ϕ ∧¬ψ))∧ (ψ → (ψ ∧¬ϕ)).
11. Give a criterion for a conjunctive normal form to be a tautology.
12. Prove

∧∧

i≤n

ϕi ∨
∧∧

j≤m

ψj ≈
∧∧

i≤n
j≤m

(ϕi ∨ψj )

and
∨∨

i≤n

ϕi ∧
∨∨

j≤m

ψj ≈
∨∨

i≤n
j≤m

(ϕi ∧ψj ).

13. The set of all valuations, thought of as the set of all 0–1-sequences, forms a
topological space, called the Cantor space C. The basic open sets are finite
unions of sets of the form {v | �pi1 �v = · · · = �pin �v = 1 and �pj1 �v = · · · =
�pjm �v = 0}, ik �= jp for k ≤ n; p ≤m.

Define a function � � : PROP → P(C) (subsets of the Cantor space) by:
�ϕ� = {v | �ϕ�v = 1}.
(a) Show that �ϕ� is a basic open set (which is also closed),
(b) �ϕ ∨ψ � = �ϕ�∪ �ψ �; �ϕ ∧ψ � = �ϕ�∩ �ψ �; �¬ϕ� = �ϕ�c,
(c) |� ϕ⇔ �ϕ� = C; �⊥� = ∅; |� ϕ→ψ ⇔ �ϕ� ⊆ �ψ �.

Extend the mapping to sets of propositions Γ by �Γ � = {v | �ϕ�v = 1
for all ϕ ∈ Γ }. Note that �Γ � is closed.

(d) Γ |� ϕ⇔ �Γ � ⊆ �ϕ�.
14. We can view the relation |� ϕ → ψ as a kind of ordering. Put ϕ � ψ :=

|� ϕ→ψ and �|�ψ → ϕ.
(i) For each ϕ,ψ such that ϕ � ψ , find σ with ϕ � σ � ψ .

(ii) Find ϕ1, ϕ2, ϕ3, . . . such that ϕ1 � ϕ2 � ϕ3 � ϕ4 � . . .,
(iii) and show that for each ϕ,ψ with ϕ and ψ incomparable, there is a least σ

with ϕ,ψ � σ .
15. Give a recursive definition of the simultaneous substitution ϕ[ψ, . . . ,ψn/p1,

. . . , pn] and formulate and prove the appropriate analogue of the Substitution
Theorem (Theorem 2.2.6).
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2.4 Natural Deduction

In the preceding sections we have adopted the view that propositional logic is based
on truth tables; i.e. we have looked at logic from a semantical point of view. This,
however, is not the only possible point of view. If one thinks of logic as a codi-
fication of (exact) reasoning, then it should stay close to the practice of inference
making, instead of basing itself on the notion of truth. We will now explore the non-
semantic approach, by setting up a system for deriving conclusions from premises.
Although this approach is of a formal nature, i.e. it abstains from interpreting the
statements and rules, it is advisable to keep some interpretation in mind. We are
going to introduce a number of derivation rules, which are, in a way, the atomic
steps in a derivation. These derivation rules are designed (by Gentzen), to render the
intuitive meaning of the connectives as faithfully as possible.

There is one minor problem, which at the same time is a major advantage,
namely: our rules express the constructive meaning of the connectives. This ad-
vantage will not be exploited now, but it is good to keep it in mind when dealing
with logic (it is exploited in intuitionistic logic).

One small example: the principle of the excluded third tells us that |� ϕ ∨ ¬ϕ,
i.e., assuming that ϕ is a definite mathematical statement, either it or its negation
must be true. Now consider some unsolved problem, e.g. Riemann’s hypothesis,
call it R. Then either R is true, or ¬R is true. However, we do not know which of
the two is true, so the constructive content of R ∨ ¬R is nil. Constructively, one
would require a method to find out which of the alternatives holds.

The propositional connective which has a strikingly different meaning in a con-
structive and in a non-constructive approach is the disjunction. Therefore we restrict
our language for the moment to the connectives ∧,→ and ⊥. This is no real restric-
tion as {→,⊥} is a functionally complete set.

Our derivations consist of very simple steps, such as “from ϕ and ϕ → ψ con-
clude ψ”, written as:

ϕ ϕ→ψ

ψ

The propositions above the line are premises, and the one below the line is the
conclusion. The above example eliminated the connective→. We can also introduce
connectives. The derivation rules for ∧ and → are separated into

Introduction Rules Elimination Rules

(∧I )
ϕ ψ ∧I
ϕ ∧ψ

(∧E)
ϕ ∧ψ ∧E

ϕ

ϕ ∧ψ ∧E
ψ

(→ I )

[ϕ]
...

ψ → I
ϕ→ψ

(→E)
ϕ ϕ→ψ →E

ψ
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We have two rules for ⊥, both of which eliminate ⊥, but introduce a formula.

(⊥)
⊥ ⊥
ϕ

(RAA)

[¬ϕ]
...

⊥
RAA

ϕ

As usual “¬ϕ” is used here as an abbreviation for “ϕ→⊥”.
The rules for ∧ are evident: if we have ϕ and ψ we may conclude ϕ ∧ ψ , and

if we have ϕ ∧ ψ we may conclude ϕ (or ψ ). The introduction rule for implica-
tion has a different form. It states that, if we can derive ψ from ϕ (as a hypothe-
sis), then we may conclude ϕ → ψ (without the hypothesis ϕ). This agrees with
the intuitive meaning of implication: ϕ → ψ means “ψ follows from ϕ”. We have
written the rule (→ I) in the above form to suggest a derivation. The notation will
become clearer after we have defined derivations. For the time being we will write
the premises of a rule in the order that suits us best, later we will become more
fastidious.

The rule (→ E) is also evident on the meaning of implication. If ϕ is given
and we know that ψ follows from ϕ, then we also have ψ . The falsum rule, (⊥),
expresses that from an absurdity we can derive everything (ex falso sequitur quodli-
bet), and the reductio ad absurdum rule, (RAA), is a formulation of the principle of
proof by contradiction: if one derives a contradiction from the hypothesis ¬ϕ, then
one has a derivation of ϕ (without the hypothesis ¬ϕ, of course). In both (→ I )
and (RAA) hypotheses disappear, which is indicated by the striking out of the hy-
pothesis. We say that such a hypothesis is canceled. Let us digress for a moment on
the cancellation of hypotheses. We first consider implication introduction. There is
a well-known theorem in plane geometry which states that “if a triangle is isosceles,
then the angles opposite the equal sides are equal to one another” (Euclid’s Ele-
ments, Book I, Proposition 5). This is shown as follows: we suppose that we have
an isosceles triangle and then, in a number of steps, we deduce that the angles at
the base are equal. Thence we conclude that the angles at the base are equal if the
triangle is isosceles.

Query 1: do we still need the hypothesis that the triangle is isosceles? Of course
not! We have, so to speak, incorporated this condition in the statement itself. It is
precisely the role of conditional statements, such as “if it rains I will use my um-
brella”, to get rid of the obligation to require (or verify) the condition. In abstracto:
if we can deduce ψ using the hypothesis ϕ, then ϕ → ψ is the case without the
hypothesis ϕ (there may be other hypotheses, of course).

Query 2: is it forbidden to maintain the hypothesis? Answer: no, but it clearly
is superfluous. As a matter of fact we usually experience superfluous conditions
as confusing or even misleading, but that is rather a matter of the psychology of
problem solving than of formal logic. Usually we want the best possible result, and
it is intuitively clear that the more hypotheses we state for a theorem, the weaker
our result is. Therefore we will as a rule cancel as many hypotheses as possible.
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In the case of (RAA) we also deal with cancellation of hypotheses. Again, let us
consider an example.

In analysis we introduce the notion of a convergent sequence (an) and subse-
quently the notion “a is a limit of (an)”. The next step is to prove that for each
convergent sequence there is a unique limit; we are interested in the part of the
proof that shows that there is at most one limit. Such a proof may run as follows: we
suppose that there are two distinct limits a and a′, and from this hypothesis, a �= a′,
we derive a contradiction. Conclusion: a = a′. In this case we of course drop the
hypothesis a �= a′; this time it is not a case of being superfluous, but of being in
conflict! So, both in the case (→ I ) and in (RAA), it is sound practice to cancel all
occurrences of the hypothesis concerned.

In order to master the technique of natural deduction, and to become familiar with
the technique of cancellation, one cannot do better than to look at a few concrete
cases. So before we go on to the notion of derivation we consider a few examples.

I

[ϕ ∧ψ]1 ∧E
ψ

[ϕ ∧ψ]1 ∧E
ϕ ∧I

ψ ∧ ϕ → I1
ϕ ∧ψ →ψ ∧ ϕ

II

[ϕ]2 [ϕ→⊥]1 →E⊥ → I1
(ϕ→⊥)→⊥ → I2

ϕ→ ((ϕ→⊥)→⊥)

III

[ϕ ∧ψ]1 ∧E
ψ

[ϕ ∧ψ]1 ∧E
ϕ [ϕ→ (ψ → σ)]2 →E

ψ → σ →E
σ → I1

ϕ ∧ψ → σ → I2
(ϕ→ (ψ → σ))→ (ϕ ∧ψ → σ)

If we use the customary abbreviation “¬ϕ” for “ϕ→⊥”, we can bring some deriva-
tions into a more convenient form. (Recall that ¬ϕ and ϕ→⊥, as given in 2.2, are
semantically equivalent.) We rewrite derivation II using the abbreviation:

II′

[ϕ]2 [¬ϕ]1 →E⊥ → I1¬¬ϕ → I2
ϕ→¬¬ϕ

In the following example we use the negation sign and also the bi-implication;
ϕ↔ψ for (ϕ→ψ)∧ (ψ → ϕ).



32 2 Propositional Logic

IV

[ϕ]1
[ϕ↔¬ϕ]3

∧E

ϕ→¬ϕ

→E

¬ϕ [ϕ]1
→E

⊥
→ I1¬ϕ

[ϕ↔¬ϕ]3
∧E

¬ϕ→ ϕ

→E

ϕ

[ϕ]2
[ϕ↔¬ϕ]3

∧E

ϕ→¬ϕ

→E

¬ϕ [ϕ]2
→E

⊥
→ I2¬ϕ

→E

⊥
→ I3¬(ϕ↔¬ϕ)

The examples show us that derivations have the form of trees. We show the trees
below:

One can just as well present derivations as (linear) strings of propositions. We will
stick, however, to the tree form, the idea being that what comes naturally in tree
form should not be put in a linear straightjacket.

We now strive to define the notion of derivation in general. We will use an in-
ductive definition to produce trees.

Notation If D
ϕ

, D′
ϕ′ are derivations with conclusions ϕ,ϕ′, then

D
ϕ

ψ

,
D D′
ϕ ϕ′
ψ

are deriva-

tions obtained by applying a derivation rule to ϕ (and ϕ and ϕ′). The cancellation
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of a hypothesis is indicated as follows: if
ψ

D
ϕ

is a derivation with hypothesis ψ , then

[ψ]
D
ϕ

σ

is a derivation with ψ canceled.

With respect to the cancellation of hypotheses, we note that one does not neces-
sarily cancel all occurrences of such a proposition ψ . This clearly is justified, as one
feels that adding hypotheses does not make a proposition underivable (irrelevant in-
formation may always be added). It is a matter of prudence, however, to cancel as
much as possible. Why carry more hypotheses than necessary?

Furthermore one may apply (→ I) if there is no hypothesis available for cancel-
lation; e.g. ϕ

ψ→ϕ
→ I is a correct derivation, using just (→ I ). To sum up: given

a derivation tree of ψ (or ⊥), we obtain a derivation tree of ϕ → ψ (or ϕ) at the
bottom of the tree and strike out some (or all) occurrences, if any, of ϕ (or ¬ϕ) on
top of a tree.

A few words on the practical use of natural deduction: if you want to give a
derivation for a proposition it is advisable to devise some kind of strategy, just as
in a game. Suppose that you want to show [ϕ ∧ ψ → σ ] → [ϕ → (ψ → σ)] (Ex-
ample III), then (since the proposition is an implicational formula) the rule (→ I )

suggests itself. So try to derive ϕ→ (ψ → σ) from ϕ ∧ψ → σ .
Now we know where to start and where to go to. To make use of ϕ ∧ ψ → σ

we want ϕ ∧ ψ (for (→ E)), and to get ϕ → (ψ → σ) we want to derive ψ → σ

from ϕ. So we may add ϕ as a hypothesis and look for a derivation of ψ → σ .
Again, this asks for a derivation of σ from ψ , so add ψ as a hypothesis and look for a
derivation of σ . By now we have the following hypotheses available: ϕ ∧ψ → σ,ϕ

and ψ . Keeping in mind that we want to eliminate ϕ ∧ ψ it is evident what we
should do. The derivation III shows in detail how to carry out the derivation. After
making a number of derivations one gets the practical conviction that one should first
take propositions apart from the bottom upwards, and then construct the required
propositions by putting together the parts in a suitable way. This practical conviction
is confirmed by the Normalization Theorem, to which we will return later. There is
a particular point which tends to confuse novices:

[ϕ]
.

.

.

⊥
¬ϕ

→ I

and

[¬ϕ]
.

.

.

⊥
ϕ

RAA

look very much alike. Are they not both cases of reductio ad absurdum? As a matter
of fact the leftmost derivation tells us (informally) that the assumption of ϕ leads
to a contradiction, so ϕ cannot be the case. This is in our terminology the meaning
of “not ϕ”. The rightmost derivation tells us that the assumption of ¬ϕ leads to a
contradiction, hence (by the same reasoning) ¬ϕ cannot be the case. So, on account
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of the meaning of negation, we only would get ¬¬ϕ. It is by no means clear that
¬¬ϕ is equivalent to ϕ (indeed, this is denied by the intuitionists), so it is an extra
property of our logic. (This is confirmed in a technical sense: ¬¬ϕ → ϕ is not
derivable in the system without RAA.)

We now return to our theoretical notions.

Definition 2.4.1 The set of derivations is the smallest set X such that

(1) The one-element tree ϕ belongs to X for all ϕ ∈ PROP.

(2∧) If D
ϕ

, D′
ϕ′ ∈X, then

D
ϕ

D′
ϕ′

ϕ∧ϕ′
∈X.

If D
ϕ∧ψ

∈X, then
D

ϕ∧ψ

ϕ

,
D

ϕ∧ψ

ψ

∈X.

(2→) If
ϕ
D
ψ

∈X, then
[ϕ]
D
ψ

ϕ→ψ

∈X.

If D
ϕ

, D′
ϕ→ψ

∈X, then
D
ϕ

D′
ϕ→ψ

ψ

∈X.

(2⊥) If D
⊥ ∈X, then

D
⊥
ϕ

∈X.

If
¬ϕ
D
⊥
∈X, then

[¬ϕ]
D
⊥
ϕ

∈X.

The bottom formula of a derivation is called its conclusion. Since the class of
derivations is inductively defined, we can mimic the results of Sect. 2.1.

For example, we have a principle of induction on D: let A be a property. If A(D)

holds for one-element derivations and A is preserved under the clauses (2∧), (2→)

and (2⊥), then A(D) holds for all derivations. Likewise we can define mappings on
the set of derivations by recursion (cf. Exercises 6, 7, 9).

Definition 2.4.2 The relation Γ � ϕ between sets of propositions and propositions
is defined as follows: there is a derivation with conclusion ϕ and with all (un-
canceled) hypotheses in Γ . (See also Exercise 6.)

We say that ϕ is derivable from Γ . Note that by definition Γ may contain many
superfluous “hypotheses”. The symbol � is called the turnstile.

If Γ = ∅, we write � ϕ, and we say that ϕ is a theorem.
We could have avoided the notion of “derivation” and taken instead the notion

of “derivability” as fundamental, see Exercise 10. The two notions, however, are
closely related.
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Lemma 2.4.3

(a) Γ � ϕ if ϕ ∈ Γ ,
(b) Γ � ϕ,Γ ′ �ψ ⇒ Γ ∪ Γ ′ � ϕ ∧ψ ,
(c) Γ � ϕ ∧ψ ⇒ Γ � ϕ and Γ �ψ ,
(d) Γ ∪ {ϕ} �ψ ⇒ Γ � ϕ→ψ ,
(e) Γ � ϕ,Γ ′ � ϕ→ψ ⇒ Γ ∪ Γ ′ �ψ ,
(f) Γ �⊥⇒ Γ � ϕ,
(g) Γ ∪ {¬ϕ} � ⊥⇒ Γ � ϕ.

Proof Immediate from the definition of derivation. �

We now list some theorems. ¬ and ↔ are used as abbreviations.

Theorem 2.4.4

(1) � ϕ→ (ψ → ϕ),
(2) � ϕ→ (¬ϕ→ψ),
(3) � (ϕ→ψ)→[(ψ → σ)→ (ϕ→ σ)],
(4) � (ϕ→ψ)↔ (¬ψ →¬ϕ),
(5) � ¬¬ϕ↔ ϕ,
(6) � [ϕ→ (ψ → σ)] ↔ [ϕ ∧ψ → σ ],
(7) �⊥↔ (ϕ ∧¬ϕ).

Proof

1.

[ϕ]1 → I
ψ → ϕ → I1

ϕ→ (ψ → ϕ)

2.

[ϕ]2 [¬ϕ]1 →E⊥ ⊥
ψ → I1¬ϕ→ψ → I2

ϕ→ (¬ϕ→ψ)

3.

[ϕ]1 [ϕ→ψ]3 →E
ψ [ψ → σ ]2 →E

σ → I1
ϕ→ σ → I2

(ψ → σ)→ (ϕ→ σ) → I3
(ϕ→ψ)→ ((ψ → σ)→ (ϕ→ σ))



36 2 Propositional Logic

4. For one direction, substitute ⊥ for σ in 3, then � (ϕ → ψ)→ (¬ψ →¬ϕ).
Conversely:

[¬ψ]1 [¬ψ →¬ϕ]3 →E¬ϕ [ϕ]2 →E⊥
RAA1

ψ → I2
ϕ→ψ → I3

(¬ψ →¬ϕ)→ (ϕ→ψ)

So now we have

D

(ϕ→ψ)→ (¬ψ →¬ϕ)

D′

(¬ψ →¬ϕ)→ (ϕ→ψ) ∧I
(ϕ→ψ)↔ (¬ψ →¬ϕ)

5. We already proved ϕ→¬¬ϕ as an example. Conversely:

[¬ϕ]1 [¬¬ϕ]2 →E⊥
RAA1

ϕ → I2¬¬ϕ→ ϕ

The result now follows. Numbers 6 and 7 are left to the reader. �

The system outlined in this section is called the “calculus of natural deduction”
for a good reason: its manner of making inferences corresponds to the reasoning
we intuitively use. The rules present means to take formulas apart, or to put them
together. A derivation then consists of a skillful manipulation of the rules, the use of
which is usually suggested by the form of the formula we want to prove.

We will discuss one example in order to illustrate the general strategy of building
derivations. Let us consider the converse of our previous example III.

To prove (ϕ ∧ ψ → σ) → [ϕ → (ψ → σ)] there is just one initial step: as-
sume ϕ ∧ ψ → σ and try to derive ϕ → (ψ → σ). Now we can either look at
the assumption or at the desired result. Let us consider the latter one first: to show
ϕ→ (ψ → σ), we should assume ϕ and derive ψ → σ , but for the latter we should
assume ψ and derive σ .

So, altogether we may assume ϕ ∧ ψ → σ and ϕ and ψ . Now the procedure
suggests itself: derive ϕ ∧ψ from ϕ and ψ , and σ from ϕ ∧ψ and ϕ ∧ψ → σ .
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Put together, we get the following derivation:

[ϕ]2 [ψ]1 ∧I
ϕ ∧ψ [ϕ ∧ψ → σ ]3 →E

σ → I1
ψ → σ → I2

ϕ→ (ψ → σ) → I3
(ϕ ∧ψ → σ)→ (ϕ→ (ψ → σ))

Had we considered ϕ ∧ ψ → σ first, then the only way to proceed would be
to add ϕ ∧ ψ and apply → E. Now ϕ ∧ ψ either remains an assumption, or it is
obtained from something else. It immediately occurs to the reader to derive ϕ ∧ ψ

from ϕ and ψ . But now he will build up the derivation we obtained above.
Simple as this example seems, there are complications. In particular the rule of

RAA is not nearly as natural as the other ones. Its use must be learned by practice;
also a sense for the distinction between constructive and non-constructive will be
helpful when trying to decide on when to use it.

Finally, we recall that � is an abbreviation for ¬⊥ (i.e. ⊥→⊥).

Exercises

1. Show that the following propositions are derivable:

(a) ϕ→ ϕ, (d) (ϕ→ψ)↔¬(ϕ ∧¬ψ),

(b) ⊥→ ϕ, (e) (ϕ ∧ψ)↔¬(ϕ→¬ψ),

(c) ¬(ϕ ∧¬ϕ), (f) ϕ→ (ψ → (ϕ ∧ψ)).

2. Do the same for

(a) (ϕ→¬ϕ)→¬ϕ,

(b) [ϕ→ (ψ → σ ] ↔ [ψ → (ϕ→ σ)],
(c) (ϕ→ψ)∧ (ϕ→¬ψ)→¬ϕ,

(d) (ϕ→ψ)→[(ϕ→ (ψ → σ))→ (ϕ→ σ)].
3. Show

(a) ϕ �¬(¬ϕ ∧ψ), (d) � ϕ⇒�ψ → ϕ,

(b) ¬(ϕ ∧¬ψ),ϕ �ψ, (e) ¬ϕ � ϕ→ψ.

(c) ¬ϕ � (ϕ→ψ)↔¬ϕ,

4. Show

� [(ϕ→ψ)→ (ϕ→ σ)]→ [(ϕ→ (ψ → σ))],
� ((ϕ→ψ)→ ϕ)→ ϕ.

5. Show

Γ � ϕ⇒ Γ ∪Δ � ϕ,

Γ � ϕ; Δ,ϕ �ψ ⇒ Γ ∪Δ �ψ.
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6. Give a recursive definition of the function Hyp which assigns to each derivation
D its set of hypotheses Hyp(D) (this is a bit stricter than the notion in Defi-
nition 2.4.2, since it is the smallest set of hypotheses, i.e. hypotheses without
“garbage”).

7. Analogous to the substitution operator for propositions we define a substitution
operator for derivations. D[ϕ/p] is obtained by replacing each occurrence of
p in each proposition in D by ϕ. Give a recursive definition of D[ϕ/p]. Show
that D[ϕ/p] is a derivation if D is one, and that Γ � σ ⇒ Γ [ϕ/p] � σ [ϕ/p].
Remark: for several purposes finer notions of substitution are required, but this
one will do for us.

8. (Substitution Theorem) � (ϕ1 ↔ ϕ2)→ (ψ[ϕ1/p] ↔ψ[ϕ2/p]).
Hint: use induction on ψ ; the theorem will also follow from the Substitution
Theorem for |�, once we have established the Completeness Theorem.

9. The size, s(D), of a derivation is the number of proposition occurrences in D.
Give an inductive definition of s(D). Show that one can prove properties of
derivations by induction on size.

10. Give an inductive definition of the relation � (use the list of Lemma 2.4.3), and
show that this relation coincides with the derived relation of Definition 2.4.2.
Conclude that each Γ with Γ � ϕ contains a finite Δ, such that also Δ � ϕ.

11. Show

(a) ��,

(b) � ϕ⇔� ϕ↔�,

(c) � ¬ϕ⇔� ϕ↔⊥ .

2.5 Completeness

In the present section we will show that “truth” and “derivability” coincide; to be
precise: the relations “|�” and “�” coincide. The easy part of the claim is: “deriv-
ability” implies “truth”; for derivability is established by the existence of a deriva-
tion. The latter motion is inductively defined, so we can prove the implication by
induction on the derivation.

Lemma 2.5.1 (Soundness) Γ � ϕ⇒ Γ |� ϕ.

Proof Since, by Definition 2.4.2, Γ � ϕ iff there is a derivation D with all its hy-
potheses in Γ , it suffices to show: for each derivation D with conclusion ϕ and
hypotheses in Γ we have Γ |� ϕ. We now use induction on D.

(basis) If D has one element, then evidently ϕ ∈ Γ . The reader easily sees that
Γ |� ϕ.

(∧ I) Induction hypothesis: D
ϕ

and D′
ϕ′ are derivations and for each Γ , Γ ′ containing

the hypotheses of D, D′, Γ |� ϕ, Γ ′ |� ϕ′.

Now let Γ ′′ contain the hypotheses of
D D′
ϕ ϕ′
ϕ∧ϕ′

.
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Choosing Γ and Γ ′ to be precisely the set of hypotheses of D, D′, we see that
Γ ′′ ⊇ Γ ∪ Γ ′.
So Γ ′′ |� ϕ and Γ ′′ |� ϕ′. Let �ψ �v = 1 for all ψ ∈ Γ ′′, then �ϕ�v = �ϕ′�v = 1,
hence �ϕ ∧ ϕ′�v = 1. This shows Γ ′′ |� ϕ ∧ ϕ′.

(∧ E) Induction hypothesis: for any Γ containing the hypotheses of D
ϕ∧ψ

we have

Γ |� ϕ ∧ψ . Consider a Γ containing all hypotheses of
D

ϕ∧ψ

ϕ

and
D

ϕ∧ψ

ψ

. It is left to

the reader to show Γ |� ϕ and Γ |�ψ .

(→ I ) Induction hypothesis: for any Γ containing all hypotheses of
ϕ

D
ψ

, Γ |� ψ .

Let Γ ′ contain all hypotheses of

[ϕ]
D
ψ

ϕ→ψ

. Now Γ ′ ∪ {ϕ} contains all hypotheses of

ϕ

D
ψ

, so if �ϕ� = 1 and �χ � = 1 for all χ in Γ ′, then �ψ � = 1. Therefore the truth

table of→ tells us that �ϕ→ψ � = 1 if all propositions in Γ ′ have value 1. Hence
Γ ′ |� ϕ→ψ .

(→ E) An exercise for the reader.
(⊥) Induction hypothesis: for each Γ containing all hypotheses of D

⊥ , Γ |�⊥.

Since �⊥� = 0 for all valuations, there is no valuation such that �ψ � = 1 for all

ψ ∈ Γ . Let Γ ′ contain all hypotheses of
D
⊥
ϕ

and suppose that Γ ′ �|� ϕ, then �ψ � = 1

for all ψ ∈ Γ ′ and �ϕ� = 0 for some valuation. Since Γ ′ contains all hypotheses of
the first derivation we have a contradiction.

(RAA) Induction hypothesis: for each Γ containing all hypotheses of
¬ϕ

D
⊥

, we have

Γ |� ⊥. Let Γ ′ contain all hypotheses of

[¬ϕ]
D
⊥
ϕ

and suppose Γ ′ �|� ϕ, then there

exists a valuation such that �ψ � = 1 for all ψ ∈ Γ ′ and �ϕ� = 0, i.e. �¬ϕ� = 1. But
Γ ′′ = Γ ′ ∪ {¬ϕ} contains all hypotheses of the first derivation and �ψ � = 1 for all
ψ ∈ Γ ′′. This is impossible since Γ ′′ |�⊥. Hence Γ ′ |� ϕ. �

This lemma may not seem very impressive, but it enables us to show that some
propositions are not theorems, simply by showing that they are not tautologies.
Without this lemma that would have been a very awkward task. We would have
to show that there is no derivation (without hypotheses) of the given proposition. In
general this requires insight in the nature of derivations, something which is beyond
us at the moment.

Examples �� p0, �� (ϕ→ψ)→ ϕ ∧ψ .
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In the first example take the constant 0 valuation. �p0 � = 0, so �|� p0 and hence
�� p0. In the second example we are faced with a meta-proposition (a schema);
strictly speaking it cannot be derivable (only real propositions can be). By
� (ϕ→ ψ)→ ϕ ∧ψ we mean that all propositions of that form (obtained by sub-
stituting real propositions for ϕ and ψ , if you like) are derivable. To refute it we
need only one instance which is not derivable. Take ϕ =ψ = p0.

In order to prove the converse of Lemma 2.5.1 we need a few new notions. The
first one has an impressive history; it is the notion of freedom from contradiction
or consistency. It was made the cornerstone of the foundations of mathematics by
Hilbert.

Definition 2.5.2 A set Γ of propositions is consistent if Γ ��⊥.

In words: one cannot derive a contradiction from Γ . The consistency of Γ can
be expressed in various other forms.

Lemma 2.5.3 The following three conditions are equivalent:

(i) Γ is consistent,
(ii) For no ϕ, Γ � ϕ and Γ � ¬ϕ,

(iii) There is at least one ϕ such that Γ �� ϕ.

Proof Let us call Γ inconsistent if Γ �⊥; then we can just as well prove the equiv-
alence of

(iv) Γ is inconsistent,
(v) There is a ϕ such that Γ � ϕ and Γ �¬ϕ,
(vi) Γ � ϕ for all ϕ.
(iv) ⇒ (vi) Let Γ �⊥, i.e. there is a derivation D with conclusion⊥ and hypotheses

in Γ . By (⊥) we can add one inference, ⊥ � ϕ, to D, so that Γ � ϕ. This holds
for all ϕ.

(vi) ⇒ (v) Trivial.
(v) ⇒ (iv) Let Γ � ϕ and Γ �¬ϕ. From the two associated derivations one obtains

a derivation for Γ �⊥ by (→ E). �

Clause (vi) tells us why inconsistent sets (theories) are devoid of mathematical
interest. For, if everything is derivable, we cannot distinguish between “good” and
“bad” propositions. Mathematics tries to find distinctions, not to blur them.

In mathematical practice one tries to establish consistency by exhibiting a model
(think of the consistency of the negation of Euclid’s fifth postulate and the non-
euclidean geometries). In the context of propositional logic this means looking for
a suitable valuation.

Lemma 2.5.4 If there is a valuation such that �ψ �v = 1 for all ψ ∈ Γ , then Γ is
consistent.
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Proof Suppose Γ �⊥, then by Lemma 2.5.1 Γ |�⊥, so for any valuation v

�(ψ)�v = 1 for all ψ ∈ Γ ⇒ �⊥�v = 1. Since �⊥�v = 0 for all valuations, there is
no valuation with �ψ �v = 1 for all ψ ∈ Γ . Contradiction. Hence Γ is consistent. �

Examples

1. {p0,¬p1,p1 → p2} is consistent. A suitable valuation is one satisfying �p0 � = 1,
�p1 � = 0.

2. {p0,p1, . . .} is consistent. Choose the constant 1 valuation.

Clause (v) of Lemma 2.5.3 tells us that Γ ∪ {ϕ,¬ϕ} is inconsistent. Now, how
could Γ ∪ {¬ϕ} be inconsistent? It seems plausible to blame this on the derivability
of ϕ. The following confirms this.

Lemma 2.5.5

(a) Γ ∪ {¬ϕ} is inconsistent ⇒ Γ � ϕ,
(b) Γ ∪ {ϕ} is inconsistent ⇒ Γ � ¬ϕ.

Proof The assumptions of (a) and (b) yield the two derivations below: with con-
clusion ⊥. By applying (RAA), and (→ I ), we obtain derivations with hypotheses
in Γ , of ϕ, resp. ¬ϕ.

[¬ϕ]
D

⊥
RAA

ϕ

[ϕ]
D′

⊥ → I¬ϕ
�

Definition 2.5.6 A set Γ is maximally consistent iff

(a) Γ is consistent,
(b) Γ ⊆ Γ ′ and Γ ′ consistent ⇒ Γ = Γ ′.

Remark One could replace (b) by (b′): if Γ is a proper subset of Γ ′, then Γ ′ is
inconsistent. That is, by just throwing in one extra proposition, the set becomes
inconsistent.

Maximally consistent sets play an important role in logic. We will show that there
are lots of them.

Here is one example: Γ = {ϕ|�ϕ� = 1} for a fixed valuation. By Lemma 2.5.4 Γ

is consistent. Consider a consistent set Γ ′ such that Γ ⊆ Γ ′. Now let ψ ∈ Γ ′ and
suppose �ψ � = 0, then �¬ψ � = 1, and so ¬ψ ∈ Γ .

But since Γ ⊆ Γ ′ this implies that Γ ′ is inconsistent. Contradiction. Therefore
�ψ � = 1 for all ψ ∈ Γ ′, so by definition Γ = Γ ′. Moreover, from the proof of
Lemma 2.5.11 it follows that this basically is the only kind of maximally consistent
set we may expect.
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The following fundamental lemma is proved directly. The reader may recognize
in it an analogue of the maximal ideal existence lemma from ring theory (or the
Boolean prime ideal theorem), which is usually proved by an application of Zorn’s
lemma.

Lemma 2.5.7 Each consistent set Γ is contained in a maximally consistent set Γ ∗.

Proof There are countably many propositions, so suppose we have a list ϕ0, ϕ1,

ϕ2, . . . of all propositions (cf. Exercise 5). We define a non-decreasing sequence of
sets Γi such that the union is maximally consistent.

Γ0 = Γ,

Γn+1 =
{

Γn ∪ {ϕn} if Γn ∪ {ϕn} is consistent,
Γn else,

Γ ∗ =
⋃
{Γn | n≥ 0}.

(a) Γn is consistent for all n.
Immediate, by induction on n.

(b) Γ ∗ is consistent.
Suppose Γ ∗ �⊥ then, by the definition of ⊥ there is derivation D of ⊥

with hypotheses in Γ ∗; D has finitely many hypotheses ψ0, . . . ,ψk . Since
Γ ∗ =⋃{Γn|n≥ 0}, we have for each i ≤ k ψi ∈ Γni

for some ni . Let n be
max{ni |i ≤ k}, then ψ0, . . . ,ψk ∈ Γn and hence Γn �⊥. But Γn is consistent.
Contradiction.

(c) Γ ∗ is maximally consistent. Let Γ ∗ ⊆ Δ and Δ consistent. If ψ ∈ Δ, then
ψ = ϕm for some m. Since Γm ⊆ Γ ∗ ⊆ Δ and Δ is consistent, Γm ∪ {ϕm} is
consistent. Therefore Γm+1 = Γm ∪ {ϕm}, i.e. ϕm ∈ Γm+1 ⊆ Γ ∗. This shows
Γ ∗ =Δ.

Lemma 2.5.8 If Γ is maximally consistent, then Γ is closed under derivability (i.e.
Γ � ϕ⇒ ϕ ∈ Γ ).

Proof Let Γ � ϕ and suppose ϕ �∈ Γ . Then Γ ∪ {ϕ} must be inconsistent. Hence
Γ � ¬ϕ, so Γ is inconsistent. Contradiction. �

Lemma 2.5.9 Let Γ be maximally consistent; then

for all ϕ either ϕ ∈ Γ, or ¬ϕ ∈ Γ,

for all ϕ,ψ ϕ→ψ ∈ Γ ⇔ (ϕ ∈ Γ ⇒ψ ∈ Γ ).

Proof (a) We know that not both ϕ and¬ϕ can belong to Γ . Consider Γ ′ = Γ ∪{ϕ}.
If Γ ′ is inconsistent, then, by Lemmas 2.5.5, 2.5.8, ¬ϕ ∈ Γ . If Γ ′ is consistent, then
ϕ ∈ Γ by the maximality of Γ .
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(b) Let ϕ→ψ ∈ Γ and ϕ ∈ Γ . To show: ψ ∈ Γ . Since ϕ,ϕ→ψ ∈ Γ and since
Γ is closed under derivability (Lemma 2.5.8), we get ψ ∈ Γ by →E.

Conversely: let ϕ ∈ Γ ⇒ψ ∈ Γ . If ϕ ∈ Γ then obviously Γ �ψ , so Γ � ϕ→ψ .
If ϕ �∈ Γ , then ¬ϕ ∈ Γ , and hence Γ � ¬ϕ. Therefore Γ � ϕ→ψ . �

Note that we automatically get the following.

Corollary 2.5.10 If Γ is maximally consistent, then ϕ ∈ Γ ⇔ ¬ϕ �∈ Γ , and
¬ϕ ∈ Γ ⇔ ϕ �∈ Γ .

Lemma 2.5.11 If Γ is consistent, then there exists a valuation such that �ψ � = 1
for all ψ ∈ Γ .

Proof (a) By Lemma 2.5.7 Γ is contained in a maximally consistent Γ ∗.

(b) Define v(pi)=
{

1 if pi ∈ Γ ∗
0 else

and extend v to the valuation � �v .

Claim: �ϕ� = 1⇔ ϕ ∈ Γ ∗. Use induction on ϕ.

1. For atomic ϕ the claim holds by definition.
2. ϕ = ψ ∧ σ . �ϕ�v = 1⇔ �ψ �v = �σ �v = 1⇔ (induction hypothesis) ψ,σ ∈ Γ ∗

and so ϕ ∈ Γ ∗. Conversely ψ ∧ σ ∈ Γ ∗ ⇔ ψ,σ ∈ Γ ∗ (Lemma 2.5.8). The rest
follows from the induction hypothesis.

3. ϕ = ψ → σ . �ψ → σ �v = 0⇔ �ψ �v = 1 and �σ �v = 0⇔ (induction hypothe-
sis) ψ ∈ Γ ∗ and σ �∈ Γ ∗ ⇔ψ → σ �∈ Γ ∗ (by Lemma 2.5.9).

(c) Since Γ ⊆ Γ ∗ we have �ψ �v = 1 for all ψ ∈ Γ . �

Corollary 2.5.12 Γ �� ϕ ⇔ there is a valuation such that �ψ � = 1 for all ψ ∈ Γ

and �ϕ� = 0.

Proof Γ �� ϕ⇔ Γ ∪ {¬ϕ} consistent ⇔ there is a valuation such that �ψ � = 1 for
all ψ ∈ Γ ∪ {¬ϕ}, or �ψ � = 1 for all ψ ∈ Γ and �ϕ� = 0. �

Theorem 2.5.13 (Completeness Theorem) Γ � ϕ⇔ Γ |� ϕ.

Proof Γ �� ϕ⇒ Γ �|� ϕ by Corollary 2.5.12. The converse holds by Lemma 2.5.1. �

In particular we have � ϕ ⇔ |� ϕ, so the set of theorems is exactly the set to
tautologies.

The Completeness Theorem tells us that the tedious task of making derivations
can be replaced by the (equally tedious, but automatic) task of checking tautolo-
gies. This simplifies, at least in theory, the search for theorems considerably; for
derivations one has to be (moderately) clever, for truth tables one has to possess
perseverance.

For logical theories one sometimes considers another notion of completeness:
a set Γ is called complete if for each ϕ, either Γ � ϕ, or Γ � ¬ϕ. This no-
tion is closely related to “maximally consistent”. From Exercise 6 it follows that
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Cons(Γ ) = {σ |Γ � σ } (the set of consequences of Γ ) is maximally consistent if
Γ is a complete set. The converse also holds (cf. Exercise 10). Propositional logic
itself (i.e. the case Γ = ∅) is not complete in this sense, e.g. �� p0 and �� ¬p0.

There is another important notion which is traditionally considered in logic: that
of decidability. Propositional logic is decidable in the following sense: there is an
effective procedure to check the derivability of propositions ϕ. Stated otherwise:
there is an algorithm that for each ϕ tests if � ϕ.

The algorithm is simple: write down the complete truth table for ϕ and check if
the last column contains only 1’s. If so, then |� ϕ and, by the Completeness The-
orem, � ϕ. If not, then �|� ϕ and hence �� ϕ. This is certainly not the best possible
algorithm, one can find more economical ones. There are also algorithms that give
more information, e.g. they not only test � ϕ, but also yield a derivation, if one ex-
ists. Such algorithms require, however, a deeper analysis of derivations, which falls
outside the scope of this book.

There is one aspect of the Completeness Theorem that we want to discuss now.
It does not come as a surprise that truth follows from derivability. After all we start
with a combinatorial notion, defined inductively, and we end up with “being true for
all valuations”. A simple inductive proof does the trick.

For the converse the situation is totally different. By definition Γ |� ϕ means
that �ϕ�v = 1 for all valuations v that make all propositions of Γ true. So we know
something about the behavior of all valuations with respect to Γ and ϕ. Can we hope
to extract from such infinitely many set theoretical facts the finite, concrete infor-
mation needed to build a derivation for Γ � ϕ? Evidently the available facts do not
give us much to go on. Let us therefore simplify matters a bit by cutting down the Γ ;
after all we use only finitely many formulas of Γ in a derivation, so let us suppose
that those formulas ψ1, . . . ,ψn are given. Now we can hope for more success, since
only finitely many atoms are involved, and hence we can consider a finite “part” of
the infinitely many valuations that play a role. That is, only the restrictions of the
valuations to the set of atoms occurring in ψ1, . . . ,ψn,ϕ are relevant. Let us sim-
plify the problem one more step. We know that ψ1, . . . ,ψn � ϕ (ψ1, . . . ,ψn |� ϕ)

can be replaced by � ψ1 ∧ · · · ∧ψn → ϕ(|� ψ1 ∧ · · · ∧ψn → ϕ), on the ground of
the derivation rules (the definition of valuation). So we ask ourselves: given the truth
table for a tautology σ , can we effectively find a derivation for σ ? This question is
not answered by the Completeness Theorem, since our proof of it is not effective
(at least not prima facie so). It has been answered positively, e.g. by Post, Bernays
and Kalmar (cf. Kleene 1952, IV, §29) and it is easily treated by means of Gentzen
techniques, or semantic tableaux. We will just sketch a method of proof: we can
effectively find a conjunctive normal form σ ∗ for σ such that � σ ↔ σ ∗. It is easily
shown that σ ∗ is a tautology iff each conjunct contains an atom and its negation, or
¬⊥, and glue it all together to obtain a derivation of σ ∗, which immediately yields
a derivation of σ .

Exercises

1. Check which of the following sets are consistent:
(a) {¬p1 ∧ p2 → p0,p1 → (¬p1 → p2),p0 ↔¬p2},
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(b) {p0 → p1,p1 → p2,p2 → p3,p3 →¬p0},
(c) {p0 → p1,p0 ∧ p2 → p1 ∧ p3,p0 ∧ p2 ∧ p4 → p1 ∧ p3 ∧ p5, . . .}.

2. Show that the following are equivalent:
(a) {ϕ1, . . . , ϕn} is consistent.
(b) �� ¬(ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn).
(c) �� ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn−1 →¬ϕn.

3. ϕ is independent from Γ if Γ �� ϕ and Γ �� ¬ϕ. Show that: p1 → p2 is inde-
pendent from {p1 ↔ p0 ∧¬p2,p2 → p0}.

4. A set Γ is independent if for each ϕ ∈ Γ Γ − {ϕ} �� ϕ.
(a) Show that each finite set Γ has an independent subset Δ such that Δ � ϕ

for all ϕ ∈ Γ .
(b) Let Γ = {ϕ0, ϕ1, ϕ2, . . .}. Find an equivalent set Γ ′ = {ψ0,ψ1, . . .} (i.e.

Γ � ψi and Γ ′ � ϕi for all i) such that � ψn+1 → ψn, but �� ψn → ψn+1.
Note that Γ ′ may be finite.

(c) Consider an infinite Γ ′ as in (b). Define σ0 = ψ0, σn+1 = ψn → ψn+1.
Show that Δ= {σ0, σ1, σ2, . . .} is independent and equivalent to Γ ′.

(d) Show that each set Γ is equivalent to an independent set Δ.
(e) Show that Δ need not be a subset of Γ (consider {p0,p0 ∧ p1,p0 ∧ p1 ∧

p2, . . .}).
5. Find an effective way of enumerating all propositions (hint: consider sets Γn of

all propositions of rank ≤ n with atoms from p0, . . . , pn).
6. Show that a consistent set Γ is maximally consistent if either ϕ ∈ Γ or ¬ϕ ∈ Γ

for all ϕ.
7. Show that {p0,p1,p2, . . . , pn, . . .} is complete.
8. (Compactness Theorem). Show: there is a v such that �ψ �v = 1 for all ψ ∈ Γ ⇔

for each finite subset Δ⊆ Γ there is a v such that �σ �v = 1 for all σ ∈Δ.
Formulated in terms of Exercise 13 of 2.3: �Γ � �= ∅ if �Δ� �= ∅ for all finite

Δ⊆ Γ .
9. Consider an infinite set {ϕ1, ϕ2, ϕ3, . . .}. If for each valuation there is an n such

that �ϕn� = 1, then there is an m such that � ϕ1 ∨ · · · ∨ ϕm. (Hint: consider the
negations ¬ϕ1,¬ϕ2 . . . and apply Exercise 8.)

10. Show: Cons(Γ )= {σ |Γ � σ } is maximally consistent⇔ Γ is complete.
11. Show: Γ is maximally consistent ⇔ there is a unique valuation such that

�ψ � = 1 for all ψ ∈ Γ , where Γ is a theory, i.e. Γ is closed under � (Γ � σ ⇒
σ ∈ Γ ).

12. Let ϕ be a proposition containing the atom p. For convenience we write ϕ(σ)

for ϕ[σ/p].
As before we abbreviate ¬⊥ by �.
Show:

(i) ϕ(�) � ϕ(�)↔� and ϕ(�) � ϕ(ϕ(�)).
(ii) ¬ϕ(�) � ϕ(�)↔⊥,

ϕ(p),¬ϕ(�) � p↔⊥,
ϕ(p),¬ϕ(�) � ϕ(ϕ(�)).

(iii) ϕ(p) � ϕ(ϕ(�)).
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13. If the atoms p and q do not occur in ψ and ϕ respectively, then

|� ϕ(p)→ψ ⇒ |� ϕ(σ)→ψ for all σ,

|� ϕ→ψ(q)⇒ |� ϕ→ψ(σ) for all σ.

14. Let � ϕ→ ψ . We call σ an interpolant if � ϕ→ σ and � σ → ψ , and more-
over σ contains only atoms common to ϕ and ψ . Consider ϕ(p, r),ψ(r, q)

with all atoms displayed. Show that ϕ(ϕ(�, r), r) is an interpolant (use Exer-
cises 12, 13).

15. Prove the general interpolation theorem (Craig): For any ϕ,ψ with � ϕ → ψ

there exists an interpolant (iterate the procedure of Exercise 13).

2.6 The Missing Connectives

The language of Sect. 2.4 contained only the connectives ∧,→ and ⊥. We already
know that, from the semantical point of view, this language is sufficiently rich, i.e.
the missing connectives can be defined. As a matter of fact we have already used
the negation as a defined notion in the preceding sections.

It is a matter of sound mathematical practice to introduce new notions if their use
simplifies our labor, and if they codify informal existing practice. This, clearly, is a
reason for introducing ¬,↔ and ∨.

Now there are two ways to proceed: one can introduce the new connectives as
abbreviations (of complicated propositions), or one can enrich the language by ac-
tually adding the connectives to the alphabet, and providing rules of derivation.

The first procedure was adopted above; it is completely harmless, e.g. each time
one reads ϕ ↔ ψ , one has to replace it by (ϕ → ψ) ∧ (ψ → ϕ). So it is nothing
but a shorthand, introduced for convenience. The second procedure is of a more
theoretical nature. The language is enriched and the set of derivations is enlarged.
As a consequence one has to review the theoretical results (such as the Completeness
Theorem) obtained for the simpler language.

We will adopt the first procedure and also outline the second approach.

Definition 2.6.1

ϕ ∨ψ := ¬(¬ϕ ∧¬ψ),

¬ϕ := ϕ→⊥,

ϕ↔ψ := (ϕ→ψ)∧ (ψ → ϕ).

N.B. This means that the above expressions are not part of the language, but abbre-
viations for certain propositions.

The properties of ∨,¬ and ↔ are given in the following lemma.
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Lemma 2.6.2

(i) ϕ � ϕ ∨ψ , ψ � ϕ ∨ψ ,
(ii) Γ,ϕ � σ and Γ,ψ � σ ⇒ Γ , ϕ ∨ψ � σ ,

(iii) ϕ,¬ϕ �⊥,
(iv) Γ,ϕ �⊥⇒ Γ � ¬ϕ,
(v) ϕ↔ψ,ϕ �ψ and ϕ↔ψ , ψ � ϕ,

(vi) Γ,ϕ �ψ and Γ,ψ � ϕ⇒ Γ � ϕ↔ψ .

Proof The only non-trivial part is (ii). We exhibit a derivation of σ from Γ and
ϕ ∨ψ (i.e. ¬(¬ϕ ∧¬ψ)), given derivations D1 and D2 of Γ,ϕ � σ and Γ,ψ � σ .

[ϕ]1
D1

σ [¬σ ]3 →E⊥ → I1¬ϕ

[ψ]2
D2

σ [¬σ ]3 →E⊥ → I2¬ψ ∧I¬ϕ ∧¬ψ ¬(¬ϕ ∧¬ψ) →E⊥
RAA3

σ

The remaining cases are left to the reader. �

Note that (i) and (ii) read as introduction and elimination rules for ∨, (iii) and
(iv) as ditto for ¬, (vi) and (v) as ditto for ↔.

They legalize the following shortcuts in derivations:

ϕ ∨I
ϕ ∨ψ

ψ ∨I
ϕ ∨ψ

ϕ ∨ψ

[ϕ]
...

σ

[ψ]
...

σ ∨E
σ

[ϕ]
...

⊥ ¬I¬ϕ

ϕ ¬ϕ ¬E⊥
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[ϕ]
...

ψ

[ψ]
...

ϕ ↔ I
ϕ↔ψ

ϕ ϕ↔ψ

ψ

ψ ϕ↔ψ ↔E
ϕ

Consider for example an application of ∨E

D0

ϕ ∨ψ

[ϕ]
D1

σ

[ψ]
D2

σ ∨E
σ

This is a mere shorthand for

D0

¬(¬ϕ ∧¬ψ)

[ϕ]1
D1

σ [¬σ ]3
⊥

1¬ϕ

[ψ]2
D2

σ [¬σ ]3
⊥

2¬ψ

¬ϕ ∧¬ψ
1⊥

3
σ

The reader is urged to use the above shortcuts in actual derivations, whenever
convenient. As a rule, only ∨I and ∨E are of importance; the reader has of course
recognized the rules for ¬ and↔ as slightly eccentric applications of familiar rules.

Examples � (ϕ ∧ψ)∨ σ ↔ (ϕ ∨ σ)∧ (ψ ∨ σ).

(ϕ ∧ψ)∨ σ

[ϕ ∧ψ]1
ϕ

ϕ ∨ σ

[σ ]1
ϕ ∨ σ

1
ϕ ∨ σ

(ϕ ∧ψ)∨ σ

[ϕ ∧ψ]2
ψ

ψ ∨ σ

[σ ]2
ψ ∨ σ

2
ψ ∨ σ

(ϕ ∨ σ)∧ (ψ ∨ σ)
(2.2)
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Conversely

(ϕ ∨ σ)∧ (ψ ∨ σ)

ϕ ∨ σ

(ϕ ∨ σ)∧ (ψ ∨ σ)

ψ ∨ σ

[ϕ]2 [ψ]1

ϕ ∧ψ

(ϕ ∧ψ)∨ σ

[σ ]1

(ϕ ∧ψ)∨ σ
1

(ϕ ∧ψ)∨ σ

[σ ]2

(ϕ ∧ψ)∨ σ
2

(ϕ ∧ψ)∨ σ

(2.3)

Combining (2.2) and (2.3) we get one derivation:

[(ϕ ∧ψ)∨ σ ]
D

(ϕ ∨ σ)∧ (ψ ∨ σ)

[(ϕ ∨ σ)∧ (ψ ∨ σ)]
D′

(ϕ ∧ψ)∨ σ ↔ I
(ϕ ∧ψ)∨ σ ↔ (ϕ ∨ σ)∧ (ψ ∨ σ)

� ϕ ∨¬ϕ [ϕ]1 ∨I
ϕ ∨¬ϕ [¬(ϕ ∨¬ϕ)]2 →E⊥ → I1¬ϕ ∨I

ϕ ∨¬ϕ [¬(ϕ ∨¬ϕ)]2 →E⊥
RAA2

ϕ ∨¬ϕ

� (ϕ→ψ)∨ (ψ → ϕ)

[ϕ]1 → I1
ψ → ϕ ∨I

(ϕ→ψ)∨ (ψ → ϕ) [¬((ϕ→ψ)∨ (ψ → ϕ))]2 →E⊥ ⊥
ψ → I1

ϕ→ψ ∨I
(ϕ→ψ)∨ (ψ → ϕ) [¬((ϕ→ψ)∨ (ψ → ϕ))]2 →E⊥

RAA2
(ϕ→ψ)∨ (ψ → ϕ)
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� ¬(ϕ ∧ψ)→¬ϕ ∨¬ψ

[¬(ϕ ∧ψ)]

[¬(¬ϕ ∨¬ψ)]
[¬ϕ]

¬ϕ ∨¬ψ

⊥
ϕ

[¬(¬ϕ ∨¬ψ)]
[¬ψ]

¬ϕ ∨¬ψ

⊥
ψ

ϕ ∧ψ

⊥
¬ϕ ∨¬ψ

¬(ϕ ∧ψ)→¬ϕ ∨¬ψ

We now give a sketch of the second approach. We add ∨,¬ and ↔ to the lan-
guage, and extend the set of propositions correspondingly. Next we add the rules for
∨,¬ and ↔ listed above to our stock of derivation rules. To be precise we should
now also introduce a new derivability sign. However, we will stick to the trusted �
in the expectation that the reader will remember that now we are making derivations
in a larger system. The following holds.

Theorem 2.6.3

� ϕ ∨ψ ↔¬(¬ϕ ∧¬ψ).

� ¬ϕ↔ (ϕ→⊥).

� (ϕ↔ψ)↔ (ϕ→ψ)∧ (ψ → ϕ).

Proof Observe that by Lemma 2.6.2 the defined and the primitive (real) connectives
obey exactly the same derivability relations (derivation rules, if you wish). This
leads immediately to the desired result. Let us give one example.

ϕ �¬(¬ϕ ∧¬ψ) and ψ �¬(¬ϕ ∧¬ψ) (2.6.2 (i)), so by ∨E we get

ϕ ∨ψ �¬(¬ϕ ∧¬ψ) . . . (1)

Conversely ϕ � ϕ ∨ψ and ψ � ϕ ∨ψ (by ∨I ), hence by 2.6.2 (ii)

¬(¬ϕ ∧¬ψ) � ϕ ∨ψ . . . (2)

Apply ↔ I , to (1) and (2), then � ϕ ∨ ψ ↔¬(¬ϕ ∧ ¬ψ). The rest is left to the
reader. �

For more results the reader is directed to the exercises.
The rules for ∨,↔, and ¬ indeed capture the intuitive meaning of those connec-

tives. Let us consider disjunction: (∨I). If we know ϕ then we certainly know ϕ∨ψ

(we even know exactly which disjunct). The rule (∨E) captures the idea of “proof
by cases”: if we know ϕ ∨ψ and in each of both cases we can conclude σ , then we
may outright conclude σ . Disjunction intuitively calls for a decision: which of the
two disjuncts is given or may be assumed? This constructive streak of ∨ is crudely
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but conveniently blotted out by the identification of ϕ ∨ ψ and ¬(¬ϕ ∧ ¬ψ). The
latter only tells us that ϕ and ψ cannot both be wrong, but not which one is right. For
more information on this matter of constructiveness, which plays a role in demar-
cating the borderline between two-valued classical logic and effective intuitionistic
logic, the reader is referred to Chap. 6.

Note that with ∨ as a primitive connective some theorems become harder to
prove. For example, � ¬(¬¬ϕ ∧ ¬ϕ) is trivial, but � ϕ ∨ ¬ϕ is not. The follow-
ing rule of thumb may be useful: going from non-effective (or no) premises to an
effective conclusion calls for an application of RAA.

Exercises

1. Show � ϕ ∨ψ →ψ ∨ ϕ, � ϕ ∨ ϕ↔ ϕ.
2. Consider the full language L with the connectives ∧,→,⊥,↔ ∨ and the re-

stricted language L′ with connectives ∧,→,⊥. Using the appropriate derivation
rules we get the derivability notions � and �′. We define an obvious translation
from L into L′:

ϕ+ := ϕ for atomic ϕ

(ϕ�ψ)+ := ϕ+�ψ+ for �=∧,→,

(ϕ ∨ψ)+ := ¬(¬ϕ+ ∧¬ϕ+), where ¬ is an abbreviation,

(ϕ↔ψ)+ := (ϕ+ →ψ+)∧ (ψ+ → ϕ+),

(¬ϕ)+ := ϕ+ →⊥ .

Show
(i) � ϕ↔ ϕ+,

(ii) � ϕ⇔�′ ϕ+,
(iii) ϕ+ = ϕ for ϕ ∈ L′.
(iv) Show that the full logic is conservative over the restricted logic, i.e. for

ϕ ∈ L′ � ϕ⇔�′ ϕ.
3. Show that the Completeness Theorem holds for the full logic. Hint: use Exer-

cise 2.
4. Show

(a) �� ∨⊥.
(b) � (ϕ↔�)∨ (ϕ↔⊥).
(c) � ϕ↔ (ϕ↔�).

5. Show � (ϕ ∨ψ)↔ ((ϕ→ψ)→ψ).
6. Show

(a) Γ is complete⇔ (Γ � ϕ ∨ψ ⇔ Γ � ϕ or Γ �ψ , for all ϕ,ψ ),
(b) Γ is maximally consistent ⇔ Γ is a consistent theory and for all ϕ,ψ

(ϕ ∨ψ ∈ Γ ⇔ ϕ ∈ Γ or ψ ∈ Γ ).
7. Show in the system with ∨ as a primitive connective

� (ϕ→ψ)↔ (¬ϕ ∨ψ),

� (ϕ→ψ)∨ (ψ → ϕ).



52 2 Propositional Logic

Gothic Alphabet



Chapter 3
Predicate Logic

3.1 Quantifiers

In propositional logic we used large chunks of mathematical language, namely those
parts that can have a truth value. Unfortunately this use of language is patently in-
sufficient for mathematical practice. A simple argument, such as “all squares are
positive, 9 is a square, therefore 9 is positive” cannot be dealt with. From the propo-
sitional point of view the above sentence is of the form ϕ ∧ ψ → σ , and there is
no reason why this sentence should be true, although we obviously accept it as true.
The moral is that we have to extend the language, in such a way as to be able to
discuss objects and relations. In particular we wish to introduce means to talk about
all objects of the domain of discourse, e.g. we want to allow statements of the form
“all even numbers are a sum of two odd primes”. Dually, we want a means of ex-
pressing “there exists an object such that . . . ”, e.g. in “there exists a real number
whose square is 2”.

Experience has taught us that the basic mathematical statements are of the form
“a has the property P ” or “a and b are in the relation R”, etc. Examples are: “n is
even”, “f is differentiable”, “3= 5”, “7 < 12”, “B is between A and C”. Therefore
we build our language from symbols for properties, relations and objects. Further-
more we add variables to range over objects (so called individual variables), and
the usual logical connectives now including the quantifiers ∀ and ∃ (for “for all”
and “there exists”).

We first give a few informal examples.

∃xP (x) there is an x with property P,

∀yP (y) for all y P holds (all y have the property P),

∀x∃y(x = 2y) for all x there is a y such that x is two times y,

∀ε(ε > 0→∃n( 1
n

< ε)) for all positive ε there is an n such that 1
n

< ε,

x < y→∃z(x < z∧ z < y) if x < y, then there is a z such that x < z and
z < y,

∀x∃y(x.y = 1) for each x there exists an inverse y.

D. van Dalen, Logic and Structure, Universitext, DOI 10.1007/978-1-4471-4558-5_3,
© Springer-Verlag London 2013
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We know from elementary set theory that functions are a special kind of rela-
tions. It would, however, be in flagrant conflict with mathematical practice to avoid
functions (or mappings). Moreover, it would be extremely cumbersome. So we will
incorporate functions in our language.

Roughly speaking the language deals with two categories of syntactical enti-
ties: one for objects—the terms, and one for statements—the formulas. Examples
of terms are: 17, x, (2+ 5)− 7, x3y+1.

What is the subject of predicate logic with a given language? Or, to put it dif-
ferently, what are terms and formulas about? The answer is: formulas can express
properties concerning a given set of relations and functions on a fixed domain of
discourse. We have already met such situations in mathematics; we talked about
structures, e.g. groups, rings, modules, ordered sets (see any algebra text). We will
make structures our point of departure and we will get to the logic later.

In our logic we will speak about “all numbers” or “all elements”, but not about
“all ideals” or “all subsets”, etc. Loosely speaking, our variables will vary over el-
ements of a given universe (e.g. the n × n matrices over the reals), but not over
properties or relations, or properties of properties, etc. For this reason the predicate
logic of this book is called first-order logic, or also elementary logic. In everyday
mathematics, e.g. analysis, one uses higher order logic. In a way it is a surprise that
first-order logic can do so much for mathematics, as we will see. A short introduc-
tion to second-order logic will be presented in Chap. 5.

3.2 Structures

A group is a (non-empty) set equipped with two operations, a binary one and a unary
one, and with a neutral element (satisfying certain laws). A partially ordered set is a
set equipped with a binary relation (satisfying certain laws).

We generalize this as follows.

Definition 3.2.1 A structure is an ordered sequence 〈A,R1, . . . ,Rn,F1, . . . ,Fm,

{ci |i ∈ I }〉, where A is a non-empty set. R1, . . . ,Rn are relations on A, F1, . . . ,Fm

are functions on A, and the ci (i ∈ I ) are elements of A (constants).

Warning The functions Fi are total, i.e. defined for all arguments; sometimes this
calls for tricks, as with 0−1 (cf. p. 82).

Examples

〈R,+, ·,−1 ,0,1〉—the field of real numbers,
〈N,<〉—the ordered set of natural numbers.

We denote structures by Gothic capitals: A,B,C,D, . . . . The script letters are
shown on p. 52.
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If we overlook for a moment the special properties of the relations and operations
(e.g. commutativity of addition on the reals), then what remains is the type of a
structure, which is given by the number of relations, functions (or operations), and
their respective arguments, plus the number (cardinality) of constants.

Definition 3.2.2 The similarity type of a structure A= 〈A,R1, . . . ,Rn,F1, . . . ,Fm,

{ci |i ∈ I }〉 is a sequence, 〈r1, . . . , rn;a1, . . . , am;κ〉, where Ri ⊆Ari , Fj :Aaj →A,
κ = |{ci |i ∈ I }| (cardinality of I ).

The two structures in our example have (similarity) type 〈−;2,2,1;2〉 and
〈2;−;0〉. The absence of relations, functions is indicated by −. There is no ob-
jection to extending the notion of structure to contain arbitrarily many relations or
functions, but the most common structures have finite types (including finitely many
constants).

It would, of course, have been better to use semicolons for our structures, i.e.
〈A;R1, . . . ,Rn;F1, . . . ,Fm; ci |i ∈ I 〉, but that would be too pedantic.

If R ⊆ A, then we call R a property (or unary relation), if R ⊆A2, then we call
R a binary relation, if R ⊆An, then we call R an n-ary relation.

The set A is called the universe of A.

Notation A= |A|. A is called (in)finite if its universe is (in)finite. We will mostly
commit a slight abuse of language by writing down the constants instead of the set
of constants; in the example of the field of real numbers we should have written:
〈R,+, ·,−1 , {0,1}〉, but 〈R,+, ·,−1 ,0,1〉 is more traditional. Among the relations
one finds in structures, there is a very special one: the identity (or equality) relation.

Since mathematical structures, as a rule, are equipped with the identity relation,
we do not list the relation separately. It does, therefore, not occur in the similarity
type. We henceforth assume all structures to possess an identity relation and we
will explicitly mention any exceptions. For purely logical investigations it makes,
of course, perfect sense to consider a logic without identity, but this book caters to
readers from the mathematics or computer science community.

One also considers the “limiting cases” of relations and functions, i.e. 0-ary re-
lations and functions. An 0-ary relation is a subset of A∅. Since A∅ = {∅} there are
two such relations: ∅ and {∅} (considered as ordinals: 0 and 1). 0-ary relations can
thus be seen as truth values, which makes them play the role of the interpretations
of propositions. In practice 0-ary relations do not appear; e.g. they have no role to
play in ordinary algebra. Most of the time the reader can joyfully forget about them,
nonetheless we will allow them in our definition because they simplify certain con-
siderations. A 0-ary function is a mapping from A∅ into A, i.e. a mapping from {∅}
into A. Since the mapping has a singleton as domain, we can identify it with its
range.

In this way 0-ary functions can play the role of constants. The advantage of the
procedure is, however, negligible in the present context, so we will keep our con-
stants.
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Exercises

1. Write down the similarity type for the following structures:
(i) 〈Q,<,0〉

(ii) 〈N,+, ·, S,0,1,2,3,4, . . . , n, . . .〉, where S(x)= x + 1,
(iii) 〈P(N),⊆,∪,∩,c ,∅〉,
(iv) 〈Z/(5),+, ·,−,−1 ,0,1,2,3,4〉,
(v) 〈{0,1},∧,∨,→,¬,0,1〉, where ∧,∨,→,¬ operate according to the or-

dinary truth tables,
(vi) 〈R,1〉,

(vii) 〈R〉,
(viii) 〈R,N,<,T , 2, | |,−〉, where T (a, b, c) is the relation “b is between a

and c”, 2 is the square function, − is the subtraction function and | | the
absolute value.

2. Give structures with type 〈1,1;−;3〉, 〈4;−;0〉.

3.3 The Language of a Similarity Type

The considerations of this section are generalizations of those in Sect. 2.1. Since the
arguments are rather similar, we will leave a number of details to the reader. For
convenience we fix the similarity type in this section: 〈r1, . . . , rn; a1, . . . , am;κ〉,
where we assume ri ≥ 0, aj > 0.

The alphabet consists of the following symbols:

1. Predicate symbols: P1, . . . ,Pn,
.=

2. Function symbols: f1, . . . , fm

3. Constant symbols: ci for i ∈ I

4. Variables: x0, x1, x2, . . . (countably many)
5. Connectives: ∨,∧,→,¬,↔,⊥ ∀,∃
6. Auxiliary symbols: (, ),

∀ and ∃ are called the universal and the existential quantifier. The curiously looking
equality symbol has been chosen to avoid possible confusion. There are in fact a
number of equality symbols in use: one to indicate the identity in the models, one to
indicate the equality in the meta-language and the syntactic one introduced above.
We will, however, practice the usual abuse of language, and use these distinctions
only if it is really necessary. As a rule the reader will have no difficulty in recogniz-
ing the kind of identity involved.

Next we define the two syntactical categories.

Definition 3.3.1 TERM is the smallest set X with the properties

(i) ci ∈X(i ∈ I ) and xi ∈X(i ∈N),
(ii) t1, . . . , tai

∈X⇒ fi(t1, . . . , tai
) ∈X, for 1≤ i ≤m.

TERM is our set of terms.
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Definition 3.3.2 FORM is the smallest set X with the properties:

(i) ⊥∈ X;Pi ∈ X if ri = 0; t1, . . . , tri ∈ TERM ⇒ Pi(t1, . . . , tri ) ∈ X; t1, t2 ∈
TERM⇒ t1 = t2 ∈X,

(ii) ϕ,ψ ∈X⇒ (ϕ�ψ) ∈X, where � ∈ {∧,∨,→,↔},
(iii) ϕ ∈X⇒ (¬ϕ) ∈X,
(iv) ϕ ∈X⇒ ((∀xi)ϕ), ((∃xi)ϕ) ∈X.

FORM is our set of formulas. We have introduced t1 = t2 separately, but we could
have subsumed it under the first clause. If convenient, we will not treat equality sepa-
rately. The formulas introduced in (i) are called atoms. We point out that (i) includes
the case of 0-ary predicate symbols, conveniently called proposition symbols.

A proposition symbol is interpreted as a 0-ary relation, i.e. as 0 or 1 (cf. Defini-
tion 3.2.2). This is in accordance with the practice of propositional logic to interpret
propositions as true or false. For our present purpose propositions are a luxury. In
dealing with concrete mathematical situations (e.g. groups or posets) one has no
reason to introduce propositions (things with a fixed truth value). However, propo-
sitions are convenient (and even important) in the context of Boolean-valued logic
or Heyting-valued logic, and in syntactical considerations.

We will, however, allow a special proposition: ⊥, the symbol for the false propo-
sition (cf. Sect. 2.2).

The logical connectives have, what one could call “a domain of action”, e.g. in
ϕ→ ψ the connective → yields the new formula ϕ→ ψ from formulas ϕ and ψ ,
and so→ bears on ϕ,ψ and all their parts. For propositional connectives this is not
terribly interesting, but for quantifiers (and variable-binding operators in general) it
is. The notion goes by the name of scope. So in ((∀x)ϕ) and ((∃x)ϕ),ϕ is the scope
of the quantifier. By locating the matching brackets one can easily effectively find
the scope of a quantifier. If a variable, term or formula occurs in ϕ, we say that it is
in the scope of the quantifier in ∀xϕ or ∃xϕ.

Just as in the case of PROP, we have induction principles for TERM and FORM.

Lemma 3.3.3 Let A(t) be a property of terms. If A(t) holds for t a variable or
a constant, and if A(t1),A(t2), . . . ,A(tn)⇒ A(f (t1, . . . , tn)), for all function sym-
bols f , then A(t) holds for all t ∈ TERM.

Proof Cf. Theorem 2.1.3. �

Lemma 3.3.4 Let A(ϕ) be a property of formulas. If

(i) A(ϕ) for atomic ϕ,
(ii) A(ϕ),A(ψ)⇒A(ϕ�ψ),

(iii) A(ϕ)⇒A(¬ϕ),
(iv) A(ϕ)⇒A((∀xi)ϕ),A((∃xi)ϕ) for all i, then A(ϕ) holds for all ϕ ∈ FORM.

Proof Cf. Theorem 2.1.3. �
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We will straight away introduce a number of abbreviations. In the first place
we adopt the bracket conventions of propositional logic. Furthermore we delete the
outer brackets and the brackets round ∀x and ∃x whenever possible. We agree that
quantifiers bind more strongly than binary connectives. Furthermore we join strings
of quantifiers, e.g. ∀x1x2∃x3x4ϕ stands for ∀x1∀x2∃x3∃x4ϕ. For better readability
we will sometimes separate the quantifier and the formula by a dot: ∀x · ϕ. We
will also assume that n in f (t1, . . . , tn), P (t1, . . . , tn) always indicates the correct
number of arguments. A word of warning: the use of = might confuse a careless
reader. The symbol “=” is used in the language L, where it is a proper syntactic
object. It occurs in formulas such as x0 = x7, but it also occurs in the meta-language,
e.g. in the form x = y, which must be read “x and y are one and the same variable”.
However, the identity symbol in x = y can just as well be the legitimate symbol
from the alphabet, i.e. x = y is a meta-atom, which can be converted into a proper
atom by substituting genuine variable symbols for x and y. Sometimes ≡ is used
for “syntactically identical”, as in “x and y are the same variable”. We will opt for
“=” for the equality in structures (sets) and “

.=” for the identity predicate symbol
in the language. We will use

.= a few times, but we prefer to stick to a simple “=”
trusting the alertness of the reader.

Example 3.3.5 Example of a language of type 〈2;2,1;1〉.
predicate symbols: L,

.=
function symbols: p, i

constant symbol: e

Some terms: t1 := x0; t2 := p(x1, x2); t3 := p(e, e); t4 := i(x7); t5 :=
p(i(p(x2, e)), i(x1)).

Some formulas:

ϕ1 := x0
.= x2, ϕ4 := (x0

.= x1 → x1
.= x0),

ϕ2 := t3
.= t4, ϕ5 := (∀x0)(∀x1)(x0

.= x1 →¬L(v0, x1))

ϕ3 := L(i(x5), e), ϕ6 := (∀x0)(∃x1)(p(x0, x1)
.= e),

ϕ7 := (∃x1)(¬x1
.= e ∧ p(x1, x1)

.= e).

(We have chosen a suggestive notation; think of the language of ordered groups:
L for “less than”, p, i for “product” and “inverse”.) Note that the order in which
the various symbols are listed is important. In our example p has 2 arguments and i

has 1.
In mathematics there are a number of variable-binding operations, such as sum-

mation, integration, abstraction. Consider, for example, integration, in
∫ 1

0 sinx dx

the variable plays an unusual role for a variable. For x cannot “vary”; we cannot
(without writing nonsense) substitute any number we like for x. In the integral the
variable x is reduced to a tag. We say that the variable x is bound by the inte-
gration symbol. Analogously we distinguish in logic between free and bound vari-
ables.



3.3 The Language of a Similarity Type 59

A variable may occur in a formula more than once. It is quite often useful to
look at a specific instance at a certain place in the string that makes up the formula.
We call these occurrences of the variable, and we use expressions like “x occurs
in the subformula ψ of ϕ.” In general we consider occurrences of formulas, terms,
quantifiers, and the like.

In defining various syntactical notions we again freely use the principle of defi-
nition by recursion (cf. Theorem 2.1.6). The justification is immediate: the value of
a term (formula) is uniquely determined by the values of its parts. This allows us to
determine the value of H(t) for a mapping acting on terms, in finitely many steps.

Definition by Recursion on TERM Let H0 : Var∪Const→A (i.e. H0 is defined
on variables and constants), Hi : Aai → A, then there is a unique mapping H :
TERM→A such that

{
H(t)=H0(t) for t a variable or a constant,
H(fi(t1, . . . , tai

))=Hi(H(t1), . . . ,H(tai
)).

Definition by Recursion on FORM Let

Hat :At →A (i.e. Hat is defined on atoms),
H� :A2 →A (� ∈ {∨,∧,→,↔}),
H¬ :A→A,

H∀ :A×N →A,

H∃ :A×N →A.

Then there is a unique mapping H : FORM→A such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(ϕ)=Hat (ϕ) for atomic ϕ,

H(ϕ�ψ)=H�(H(ϕ),H(ψ)),

H(¬ϕ)=H¬(H(ϕ)),

H(∀xiϕ)=H∀(H(ϕ), i),

H(∃xiϕ)=H∃(H(ϕ), i).

Definition 3.3.6 The set FV(t) of free variables of t is defined by

(i) FV(xi) := {xi},
FV(ci) := ∅

(ii) FV(f (t1, . . . , tn)) := FV(t1)∪ · · · ∪ FV(tn).

Remark To avoid messy notation we will usually drop the indices and tacitly assume
that the number of arguments is correct. The reader can easily provide the correct
details, should he wish to do so.

Definition 3.3.7 The set FV(ϕ) of free variables of ϕ is defined by

(i) FV(P (t1, . . . , tp)) := FV(t1)∪ · · · ∪ FV(tp),
FV(t1 = t2) := FV(t1) ∪ FV(t2), FV(⊥) = FV(P ) := ∅ for P a proposition
symbol,
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(ii) FV(ϕ�ψ) := FV(ϕ)∪ FV(ψ),
FV(¬ϕ) := FV(ϕ),

(iii) FV(∀xiϕ) := FV(∃xiϕ) := FV(ϕ)− {xi}.

Definition 3.3.8 t or ϕ is called closed if FV(t)= ∅, resp. FV(ϕ)= ∅. A closed for-
mula is also called a sentence. A formula without quantifiers is called open. TERMc

denotes the set of closed terms; SENT denotes the set of sentences.

It is left to the reader to define the set BV(ϕ) of bound variables of ϕ.

Continuation of Example 3.3.5

FV(t2)= {x1, x2}; FV(t3)= ∅; FV(ϕ2)= FV(t3)∪ FV(t4)= {x7};
FV(ϕ7)= ∅; BV(ϕ4)= ∅; BV(ϕ6)= {x0, x1}. ϕ5, ϕ6, ϕ7 are sentences.

Warning FV(ϕ)∩BV(ϕ) need not be empty; in other words, the same variable may
occur free and bound. To handle such situations one considers free (resp. bound)
occurrences of variables. When necessary we will make informal use of occurrences
of variables; see also p. 59.

Example ∀x1(x1 = x2)→ P(x1) contains x1 both free and bound, for the occur-
rence of x1 in P(x1) is not within the scope of the quantifier.

In predicate calculus we have substitution operators for terms and for formulas.

Definition 3.3.9 Let s and t be terms, then s[t/x] is defined by:

(i) y[t/x] :=
{

y if y �≡ x

t if y ≡ x

c[t/x] := c

(ii) f (t1, . . . , tp)[t/x] := f (t1[t/x], . . . , tp[t/x]).

Note that in the clause (i) y ≡ x means “x and y are the same variables”.

Definition 3.3.10 ϕ[t/x] is defined by:

(i) ⊥ [t/x] :=⊥,

P [t/x] := P for propositions P,

P (t1, . . . , tp)[t/x] := P(t1[t/x], . . . , tp[t/x]),
(t1 = t2)[t/x] := t1[t/x] = t2[t/x],

(ii) (ϕ�ψ)[t/x] := ϕ[t/x]�ψ[t/x],
(¬ϕ)[t/x] := ¬ϕ[t/x]
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(iii) (∀yϕ)[t/x] :=
{∀yϕ[t/x] if x �≡ y

∀yϕ if x ≡ y

(∃yϕ)[t/x] :=
{∃yϕ[t/x] if x �≡ y

∃yϕ if x ≡ y

Substitution of formulas is defined as in the case of propositions; for convenience
we use “$” as a symbol for the propositional symbol (0-ary predicate symbol) which
acts as a “place holder”.

Definition 3.3.11 σ [ϕ/$] is defined by:

(i) σ [ϕ/$] :=
{

σ if σ �≡ $
ϕ if σ ≡ $

for atomic σ,

(ii) (σ1�σ2)[ϕ/$] := σ1[ϕ/$]�σ2[ϕ/$]
(¬σ1)[σ/$] := ¬σ1[ϕ/$]
(∀yσ)[ϕ/$] := ∀y.σ [ϕ/$]
(∃yσ)[ϕ/$] := ∃y.σ [ϕ/$].

Continuation of Example 3.3.5

t4[t2/x1] = i(x7); t4[t2/x7] = i(p(x1, x2));
t5[x2/x1] = p(i(p(x2, e), i(x2)),

ϕ1[t3/x0] = p(e, e)
.= x2; ϕ5[t3/x0] = ϕ5.

We will sometimes make simultaneous substitutions, the definition is a slight
modification of Definitions 3.3.9, 3.3.10 and 3.3.11. The reader is asked to write
down the formal definitions. We denote the result of a simultaneous substitution of
t1, . . . , tn for y1, . . . , yn in t by t[t1, . . . , tn/y1, . . . , yn] (similarly for ϕ).

Note that a simultaneous substitution is not the same as its corresponding re-
peated substitution.

Example (x0
.= x1)[x1, x0/x0, x1] = (x1

.= x0), but ((x0
.= x1)[x1/x0])[x0/x1] =

(x1
.= x1)[x0/x1] = (x0

.= x0).

The quantifier clause in Definition 3.3.10 forbids substitution for bound vari-
ables. There is, however, one more case we want to forbid: a substitution, in which
some variable after the substitution becomes bound. We will give an example of
such a substitution; the reason why we forbid it is that it can change the truth value
in an absurd way. At this moment we do not have a truth definition, so the argument
is purely heuristic.

Example ∃x(y < x)[x/y] = ∃x (x < x).
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Note that the right-hand side is false in an ordered structure, whereas ∃x(y < x)

may very well be true. We make our restriction precise.

Definition 3.3.12 t is free for x in ϕ if

(i) ϕ is atomic,
(ii) ϕ := ϕ1�ϕ2 (or ϕ := ¬ϕ1) and t is free for x in ϕ1 and ϕ2 (resp. ϕ1),

(iii) ϕ := ∃yψ (or ϕ := ∀yψ ) and if x ∈ FV(ϕ), then y �∈ FV(t) and t is free for x

in ψ .

Examples

1. x2 is free for x0 in ∃x3P(x0, x3),
2. f (x0, x1) is not free for x0 in ∃x1P(x0, x3),
3. x5 is free for x1 in P(x1, x3)→∃x1Q(x1, x2).

Note that the use of “t is free for x in ϕ” comes down to the fact that the (free)
variables of t are not going to be bound after substitution in ϕ.

Lemma 3.3.13 t is free for x in ϕ⇔ the variables of t in ϕ[t/x] are not bound by
a quantifier.

Proof Induction on ϕ.

• For atomic ϕ the lemma is evident.

• ϕ = ϕ1�ϕ2. t is free for x in ϕ
def.⇔ t is free for x in ϕ1 and t is free for x in ϕ2

i.h.⇔
the variables of t in ϕ1[t/x] are not bound by a quantifier and the variables of t

in ϕ2[t/x] are not bound by a quantifier⇔ the variables of t in (ϕ1�ϕ2)[t/x] are
not bound by a quantifier.

• ϕ =¬ϕ1, similar.

• ϕ = ∃yψ . It suffices to consider the case x ∈ FV(ϕ). t is free for x in ϕ
def.⇔ y �∈

FV(t) and t is free for x in ψ
i.h.⇔ the variables of t are not in the scope of ∃y and

the variables of t in ψ[t/x] are not bound by (another) quantifier⇔ the variables
of t in ϕ[t/x] are not bound by a quantifier. �

There is an analogous definition and lemma for the substitution of formulas.

Definition 3.3.14 ϕ is free for $ in σ if:

(i) σ is atomic,
(ii) σ := σ1�σ2 (or ¬σ1) and ϕ is free for $ in σ1 and in σ2 (or in σ1),

(iii) σ := ∃yτ (or ∀yτ ) and if $ occurs in σ then y �∈ FV(ϕ) and ϕ is free for $ in τ .

Lemma 3.3.15 ϕ is free for $ in σ ⇔ the free variables of ϕ are in σ [ϕ/$] not
bound by a quantifier.

Proof As for Lemma 3.3.13. �
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From now on we tacitly suppose that all our substitutions are “free for”.
For convenience we introduce an informal notation that simplifies reading and

writing.

Notation In order to simplify the substitution notation and to conform to an ancient
suggestive tradition we will write down (meta-) expressions like ϕ(x, y, z),ψ(x, x),
etc. This neither means that the listed variables occur free nor that no other ones
occur free. It is merely a convenient way to handle substitution informally: ϕ(t) is
the result of replacing x by t in ϕ(x);ϕ(t) is called a substitution instance of ϕ(x).

We use the languages introduced above to describe structures, or classes of struc-
tures of a given type. The predicate symbols, function symbols and constant symbols
act as names for various relations, operations and constants. In describing a struc-
ture it is a great help to be able to refer to all elements of |A| individually, i.e. to
have names for all elements (if only as an auxiliary device). Therefore we introduce
the following.

Definition 3.3.16 The extended language, L(A), of A is obtained from the lan-
guage L, of the type of A, by adding constant symbols for all elements of |A|. We
denote the constant symbol, belonging to a ∈ |A|, by a.

Example Consider the language L of groups; then L(A), for A the additive group of
integers, has (extra) constant symbols 0,1,2, . . . ,−1,−2,−3, . . . . Observe that in
this way 0 gets two names: the old one and one of the new ones. This is no problem,
why shouldn’t something have more than one name?

Exercises

1. Write down an alphabet for the languages of the types given in Exercise 1 of
Sect. 3.2.

2. Write down five terms of the language belonging to Exercise 1 (iii), (viii), Write
down two atomic formulas of the language belonging to Exercise 1 (vii) and two
closed atoms for Exercise 1 (iii), (vi).

3. Write down an alphabet for languages of types 〈3;1,1,2;0〉, 〈−;2;0〉 and
〈1;−;3〉.

4. Check which terms are free in the following cases, and carry out the substitution:

(a) x for x in x = x, (f) x +w for z in ∀w(x + z= 0),

(b) y for x in x = x, (g) x + y for z in ∀w(x + z= 0) ∧
(c) x + y for y in z= 0, ∃y(z= x),

(d) 0+ y for y in ∃x(y = x), (h) x + y for z in ∀u(u= v)→
(e) x + y for z in ∃w(w+ x = 0), ∀z(z= y).
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3.4 Semantics

The art of interpreting (mathematical) statements presupposes a strict separation
between “language” and the mathematical “universe” of entities. The objects of lan-
guage are symbols, or strings of symbols, the entities of mathematics are numbers,
sets, functions, triangles, etc. It is a matter for the philosophy of mathematics to
reflect on the universe of mathematics; here we will simply accept it as given to
us. Our requirements concerning the mathematical universe are, at present, fairly
modest. For example, ordinary set theory will do very well for us. Likewise our
desiderata with respect to language are modest. We just suppose that there is an
unlimited supply of symbols.

The idea behind the semantics of predicate logic is very simple. Following Tarski,
we assume that a statement σ is true in a structure, if σ actually is the case (the
sentence “Snow is white” is true if snow actually is white). A mathematical example:
“2+ 2= 4” is true in the structure of natural numbers (with addition) if 2+ 2= 4
(i.e. if addition of the numbers 2 and 2 yields the number 4). Interpretation is the art
of relating syntactic objects (strings of symbols) and states of affairs “in reality”.

We will start by giving an example of an interpretation in a simple case. We
consider the structure A= (Z,<,+,−,0), i.e. the ordered group of integers.

The language has in its alphabet:

predicate symbols:
.=,L

function symbols: P,M

constant symbol: 0

L(A) has, in addition to all that, constant symbols m for all m ∈ Z. We first
interpret the closed terms of L(A); the interpretation tA of a term t is an element
of Z.

t tA

m m

P(t1, t2) tA1 + tA2
M(t) −tA

Roughly speaking, we interpret m as “its number”, P as plus, M as minus. Note
that we interpret only closed terms. This stands to reason, how should one assign a
definite integer to x?

Next we interpret sentences of L(A) by assigning one of the truth values 0 or 1.
As far as the propositional connectives are concerned, we follow the semantics for
propositional logic.

v(⊥)= 0,

v(t
.= s)=

{
1 if tA = sA

0 else,

v(L(t, s))=
{

1 if tA < sA

0 else
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v(ϕ�ψ)

v(¬ϕ)
as in Definition 2.2.1

v(∀xϕ)=min{v(ϕ[n/x]) | n ∈ Z}
v(∃xσ)=max{v(ϕ[n/x]) | n ∈ Z}

A few remarks are in order.

1. In fact we have defined a function v by recursion on ϕ.
2. The valuation of a universally quantified formula is obtained by taking the min-

imum of all valuations of the individual instances, i.e. the value is 1 (true) iff all
instances have the value 1. In this respect ∀ is a generalization of ∧. Likewise ∃
is a generalization of ∨.

3. v is uniquely determined by A, hence vA would be a more appropriate notation.
For convenience we will, however, stick to just v.

4. As in the semantics of propositional logic, we will write �ϕ�A for vA(ϕ), and
when no confusion arises we will drop the subscript A.

5. It would be tempting to make our notation really uniform by writing �t �A for tA.
We will, however, keep both notations and use whichever is the most readable.
The superscript notation has the drawback that it requires more brackets, but the
� �-notation does not improve readability.

Examples

1. (P (P (2,3),M(7)))A = P(2,3)A +M(7)A = (2
A + 3

A
) + (−7

A
) = 2 + 3 +

(−7)=−2,
2. �2

.=−1� = 0, since 2 �= −1,
3. �0

.= 1→ L(25,10)� = 1, since �0= 1� = 0 and �L(25,10)� = 0; by the inter-
pretation of the implication the value is 1,

4. �∀x∃y(L(x, y))� =minn(maxm�L(n,m)�).
�L(n,m)� = 1 for m > n, so for fixed n, maxm�L(n,m)� = 1, and hence
minn maxm�L(n,m)� = 1.

Let us now present a definition of interpretation for the general case. Consider
A = 〈A,R1, . . . ,Rn,F1, . . . ,Fm, {ci |i ∈ I }〉 of a given similarity type 〈r1, . . . , rn;
a1, . . . , am; |I |〉.

The corresponding language has predicate symbols R1, . . . ,Rn, function sym-
bols F 1, . . . ,Fm and constant symbols ci . L(A), moreover, has constant symbols a

for all a ∈ |A|.

Definition 3.4.1 An interpretation of the closed terms of L(A) in A is a mapping
(.)A : TERMc →|A| satisfying:

(i) ci
A = ci (= �ci �A)

aA = a, (= �a�A)
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(ii) (F i(t1, . . . , tp))A = Fi(t
A
1 , . . . , tAp ), (= �Fi(t1, . . . , tp)�A

where p = ai = Fi(�t1 �A, . . . , �tp �A))

There is also a valuation notation using Scott brackets; we have indicated in
the above definition how these brackets are to be used. The following definition is
exclusively in terms of valuations.

Definition 3.4.2 An interpretation of the sentences ϕ of L(A) in A is a mapping
�.�A : SENT →{0,1}, satisfying:

(i) �⊥�A := 0,

�R�A := R (i.e. 0 or 1).

(ii) �Ri(t1, . . . , tp)�A :=
{

1 if 〈tA1 , . . . , tAp 〉 ∈Ri, where p = ri,

0 else.

�t1 = t2 �A, :=
{

1 if tA1 = tA2
0 else.

(iii) �ϕ ∧ψ �A :=min(�ϕ�A, �ψ �A),

�ϕ ∨ψ �A :=max(�ϕ�A, �ψ �A),

�ϕ→ψ �A :=max(1− �ϕ�A, �ψ �A),

�ϕ↔ψ �A := 1− |�ϕ�A − �ψ �A|,
�¬ϕ�A := 1− �ϕ�A.

(iv) �∀xϕ�A := min{�ϕ[a/x]�A| a ∈ |A|},
�∃xϕ�A := max{�ϕ[a/x]�A| a ∈ |A|}.

Convention: from now on we will assume that all structures and languages have
the appropriate similarity type, so that we don’t have to specify the types all the
time.

In predicate logic there is a popular and convenient alternative for the valuation
notation:

A |� ϕ stands for �ϕ�A = 1. We say that “ϕ is true, valid, in A” if A |� ϕ. The
relation |� is called the satisfaction relation.

Note that the same notation is available in propositional logic—there the role of
A is taken by the valuation, so one could very well write v |� ϕ for �ϕ�v = 1.

So far we have only defined truth for sentences of L(A). In order to extend |� to
arbitrary formulas we introduce a new notation.

Definition 3.4.3 Let FV(ϕ)= {z1, . . . , zk}, then Cl(ϕ) := ∀z1 . . . zkϕ is the univer-
sal closure of ϕ (we assume the order of variables zi to be fixed in some way).
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Definition 3.4.4

(i) A |� ϕ iff A |� Cl(ϕ),
(ii) |� ϕ iff A |� ϕ for all A (of the appropriate type),

(iii) A |� Γ iff A |�ψ for all ψ ∈ Γ ,
(iv) Γ |� ϕ iff (A |� Γ ⇒A |� ϕ), where Γ ∪ {ϕ} consists of sentences.

If A |� σ , we call A a model of σ . In general: if A |� Γ , we call A a model of Γ .
We say that ϕ is true if |� ϕ, ϕ is a semantic consequence of Γ if Γ |� ϕ, i.e. ϕ

holds in each model of Γ . Note that this is all a straightforward generalization of
Definition 2.2.4.

If ϕ is a formula with free variables, say FV(ϕ)= {z1, . . . , zk}, then we say that
ϕ is satisfied by a1, . . . , ak ∈ |A| if A |� ϕ[a1, . . . , ak/z1, . . . , zk], ϕ is called sat-
isfiable in A if there are a1, . . . , ak such that ϕ is satisfied by a1, . . . , ak and ϕ is
called satisfiable if it is satisfiable in some A. Note that ϕ is satisfiable in A iff
A |� ∃z1 . . . zkϕ.

The properties of the satisfaction relation are in understandable and convenient
correspondence with the intuitive meaning of the connectives.

Lemma 3.4.5 If we restrict ourselves to sentences, then

(i) A |� ϕ ∧ψ ⇔A |� ϕ and A |�ψ ,
(ii) A |� ϕ ∨ψ ⇔A |� ϕ or A |�ψ ,

(iii) A |� ¬ϕ⇔A �|� ϕ,
(iv) A |� ϕ→ψ ⇔ (A |� ϕ⇒A |�ψ),
(v) A |� ϕ↔ψ ⇔ (A |� ϕ⇔A |�ψ),

(vi) A |� ∀xϕ⇔A |� ϕ[a/x], for all a ∈ |A|,
(vii) A |� ∃xϕ⇔A |� ϕ[a/x], for some a ∈ |A|.

Proof Immediate from Definition 3.4.2. We will do two cases.

(iv) A |� ϕ→ψ ⇔ �ϕ→ψ �A =max(1− �ϕ�A, �ψ �A)= 1. Suppose A |� ϕ, i.e.
�ϕ�A = 1, then clearly �ψ �A = 1, or A |�ψ .
Conversely, let A |� ϕ ⇒ A |� ψ , and suppose A �|� ϕ → ψ , then �ϕ →
ψ �A = max(1 − �ϕ�A, �ψ �A) = 0. Hence �ψ �A = 0 and �ϕ�A = 1. Con-
tradiction.

(vii) A |� ∃xϕ(x)⇔ max{�ϕ(a)�A|a ∈ |A|} = 1 ⇔ there is an a ∈ |A| such that
�ϕ(a)�A = 1⇔ there is an a ∈ |A| such that A |� ϕ(a). �

Lemma 3.4.5 tells us that the interpretation of sentences in A runs parallel to
the construction of the sentences by means of the connectives. In other words, we
replace the connectives by their analogues in the meta-language and interpret the
atoms by checking the relations in the structure.

For example, consider our example of the ordered additive group of integers:
A |� ¬∀x∃y(x

.= P(y, y))⇔ It is not the case that for each number n there exists
an m such that n = 2m⇔ not every number can be halved in A. This clearly is
correct, take for instance n= 1.
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Let us reflect for a moment on the valuation of proposition symbols; an 0-ary re-
lation is a subset of A∅ = {∅}, i.e. it is ∅ or {∅} and these are, considered as ordinals,
0 or 1. So �P �A = P , and P is a truth value. This makes our definition perfectly
reasonable. Indeed, without aiming for a systematic treatment, we may observe that
formulas correspond to subsets of Ak , where k is the number of free variables. For
example, let FV(ϕ) = {z1, . . . , zk}, then we could put �ϕ�A = {〈a1, . . . , ak〉|A |�
ϕ(a1, . . . , ak)}(= {〈a1, . . . , an〉|�ϕ(a1, . . . , ak)�A = 1}), thus stretching the mean-
ing of �ϕ�A a bit. It is immediately clear that applying quantifiers to ϕ reduces the
“dimension”. For example, �∃xP (x, y)�A = {a|A |� P(b, a) for some b}, which is
the projection of �P(x, y)�A onto the y-axis.

Exercises

1. Let N= 〈N,+, ·, S,0〉, and L a language of type 〈−;2,2,1;1〉.
(i) Give two distinct terms t in L such that tN = 5.

(ii) Show that for each natural number n ∈N there is a term t such that tN = n.
(iii) Show that for each n ∈N there are infinitely many terms t such that tN = n.

2. Let A be the structure of Exercise 1 (v) of Sect. 3.2. Evaluate (((1 → 0) →
¬0)∧ (¬0)→ (1→ 0))A, (1→¬(¬0∨ 1))A.

3. Let A be the structure of Exercise 1 (viii) of Sect. 3.2. Evaluate (|(√3)2 −
−5|)A, (1− (|(−2)| − (5− (−2))))A.

4. Which cases of Lemma 3.4.5 remain correct if we consider formulas in general?
5. For sentences σ we have A |� σ or A |� ¬σ . Show that this does not hold for

ϕ with FV(ϕ) �= ∅. Show that not even for sentences |� σ or |� ¬σ holds in
general.

6. Show for closed terms t and formulas ϕ (in L(A)):
A |� t = �t �A,
A |� ϕ(t)↔ ϕ(�t �A). (We will also obtain this as a corollary to the Substitu-

tion Theorem, Corollary 3.5.9.)
7. Show that A |� ϕ⇒A |�ψ for all A, implies |� ϕ⇒ |�ψ , but not vice versa.

3.5 Simple Properties of Predicate Logic

Our definition of validity (truth) was a straightforward extension of the valuation
definition of propositional logic. As a consequence formulas which are instances
of tautologies are true in all structures A (Exercise 1). So we can copy many re-
sults from Sects. 2.2 and 2.3. We will use these results with a simple reference to
propositional logic.

The specific properties concerning quantifiers will be treated in this section. First
we consider the generalizations of De Morgan’s laws.

Theorem 3.5.1

(i) |� ¬∀xϕ↔∃x¬ϕ,
(ii) |� ¬∃xϕ↔∀x¬ϕ,
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(iii) |� ∀xϕ↔¬∃x¬ϕ,
(iv) |� ∃xϕ↔¬∀x¬ϕ.

Proof If there are no free variables involved, then the above equivalences are almost
trivial. We will do one general case.

(i) Let FV(∀xϕ) = {z1, . . . , zk}, then we must show A |� ∀z1 . . . zk(¬∀xϕ(x, z1,

. . . , zk)↔∃x¬ϕ(x, z1, . . . , zk)), for all A.
So we have to show A |� ¬∀xϕ(x, a1, . . . , ak)↔∃x¬ϕ(x, a1, . . . , ak) for ar-
bitrary a1, . . . , ak ∈ |A|. We apply the properties of |� as listed in Lemma 3.4.5:
A |� ¬∀xϕ(x, a1, . . . , ak) ⇔ A �|� ∀xϕ(x, a1, . . . , ak) ⇔ not for all b ∈
|A|A |� ϕ(b, a1, . . . , ak)⇔ there is a b ∈ |A| such that A |� ¬ϕ(b, a1, . . . , ak)

⇔A |� ∃x¬ϕ(x, a1, . . . , ak).
(ii) is similarly dealt with,

(iii) can be obtained from (i), (ii),
(iv) can be obtained from (i), (ii). �

The order of quantifiers of the same sort is irrelevant, and quantification over a
variable that does not occur can be deleted.

Theorem 3.5.2

(i) |� ∀x∀yϕ↔∀y∀xϕ,
(ii) |� ∃x∃yϕ↔∃y∃xϕ,

(iii) |� ∀xϕ↔ ϕ if x �∈ FV(ϕ),
(iv) |� ∃xϕ↔ ϕ if x �∈ FV(ϕ).

Proof Left to the reader. �

We have already observed that ∀ and ∃ are, in a way, generalizations of ∧ and ∨.
Therefore it is not surprising that ∀ (resp. ∃) distributes over ∧ (resp. ∨). ∀ (and ∃)
distributes over ∨ (resp. ∧) only if a certain condition is met.

Theorem 3.5.3

(i) |� ∀x(ϕ ∧ψ)↔∀xϕ ∧ ∀xψ ,
(ii) |� ∃x(ϕ ∨ψ)↔∃xϕ ∨ ∃xψ ,

(iii) |� ∀x(ϕ(x)∨ψ)↔∀xϕ(x)∨ψ if x �∈ FV(ψ),
(iv) |� ∃x(ϕ(x)∧ψ)↔∃xϕ(x)∧ψ if x �∈ FV(ψ).

Proof (i) and (ii) are immediate.

(iii) Let FV(∀x(ϕ(x) ∨ ψ)) = {z1, . . . , zk}. We must show that A |� ∀z1 . . . zk

[∀x(ϕ(x) ∨ ψ)↔ ∀xϕ(x) ∨ ψ] for all A, so we show, using Lemma 3.4.5,
that A |� ∀x[ϕ(x, a1, . . . , ak) ∨ ψ(a1, . . . , ak)] ⇔ A |� ∀xϕ(x, a1, . . . , ak) ∨
ψ(a1, . . . , ak) for all A and all a1, . . . , ak ∈ |A|.

Note that in the course of the argument a1, . . . , ak remain fixed, so in the
future we will no longer write them down.
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⇐: A |� ∀xϕ(x, ) ∨ ψ( )⇔ A |� ∀xϕ(x, ) or A |� ψ( )

⇔A |� ϕ(b, ) for all b or A |�ψ( ).
If A |� ψ( ), then also A |� ϕ(b, ) ∨ ψ( ) for all b, and so
A |� ∀x[ϕ(x, )∨ψ( )]. If for all b A |� ϕ(b, ) then
A |� ϕ(b, ) ∨ ψ( ) for all b, so A |� ∀x(ϕ(x, ) ∨ ψ( )).
In both cases we get the desired result.
⇒: We know that for each b ∈ |A| A |� ϕ(b, )∨ψ( ).
If A |�ψ( ), then also A |� ∀xϕ(x, )∨ψ( ), so we are done.
If A �|�ψ( ) then necessarily A |� ϕ(b, ) for all b, so
A |� ∀xϕ(x, ) and hence A |� ∀xϕ(x, )∨ψ( ).

(iv) is similar. �

In the proof above we have demonstrated a technique for dealing with the extra
free variables z1, . . . , zk , that do not play an actual role. One chooses an arbitrary
string of elements a1, . . . , ak to substitute for the zi ’s and keeps them fixed during
the proof. So in the future we will mostly ignore the extra variables.

WARNING

∀x(ϕ(x)∨ψ(x))→∀xϕ(x)∨ ∀xψ(x), and
∃xϕ(x)∧ ∃xψ(x)→∃x(ϕ(x)∧ψ(x)) are not true.

One of the Cinderella tasks in logic is the bookkeeping of substitution, keep-
ing track of things in iterated substitution, etc. We will provide a number of useful
lemmas; none of them is difficult—it is a mere matter of clerical labor.

A word of advice to the reader: none of these syntactical facts is hard to prove, nor
is there a great deal to be learned from the proofs (unless one is after very specific
goals, such as complexity of certain predicates); the best procedure is to give the
proofs directly and only to look at the proofs in the book in case of emergency.

Lemma 3.5.4

(i) Let x and y be distinct variables such that x �∈ FV(r), then (t[s/x])[r/y] =
(t[r/y])[s[r/y]/x],

(ii) Let x and y be distinct variables such that x �∈ FV(s) and let t and s be free
for x and y in ϕ, then (ϕ[t/x])[s/y] = (ϕ[s/y])[t[s/y]/x],

(iii) Let ψ be free for $ in ϕ, and let t be free for x in ϕ and ψ , then (ϕ[ψ/$])[t/x] =
(ϕ[t/x])[ψ[t/x]/$],

(iv) Let ϕ,ψ be free for $1,$2 in σ , let ψ be free for $2 in ϕ, and let $1 not occur
in ψ , then (σ [ϕ/$1])[ψ/$2] = (σ [ψ/$2])[ϕ[ψ/$2]/$1].

Proof (i) Induction on t .

• t = c, trivial.
• t = x. Then t[s/x] = s and (t[s/x])[r/y] = s[r/y]; (t[r/y])[s[r/y]/x] =

x[s[r/y]/x] = s[r/y].
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• t = y. Then (t[s/x])[r/y] = y[r/y] = r and (t[r/y])[s[r/y]/x] = r(s[r/y]/x] =
r , since x �∈ FV(r).

• t = z, where z �= x, y, trivial.
• t = f (t1, . . . , tn). Then (t[s/x])[r/y] = (f (t1[s/x], . . .))[r/y] =

f ((t1[s/x])[r/y], . . .) i.h.= f ((t1[r/y])[s[r/y]/x], . . .) = f (t1[r/y], . . .)[s[r/
y]/x] = (t[r/y])[s[r/y]/x].1
(ii) Induction on ϕ. Left to the reader.
(iii) Induction on ϕ.

• ϕ =⊥ or P distinct from $. Trivial.
• ϕ = $. Then ($[ψ/$])[t/x] = ψ[t/x] and ($[t/x])[ψ[t/x]/$] = $[ψ[t/x]/$] =

ψ[t/x].
• ϕ = ϕ1�ϕ2,¬ϕ1. Trivial.
• ϕ = ∀yϕ1. Then (∀y · ϕ1[ψ/$])[t/x] = (∀y · ϕ1[ψ/$])[t/x] = ∀y · ((ϕ1[ψ/$])[t

/x]) i.h.= ∀y((ϕ1[t/x])[ψ[t/x]/$])= ((∀yϕ1)[t/x])[ψ[t/x]/$]. ϕ = ∃yϕ1. Idem.

(iv) Induction on σ . Left to the reader. �

We immediately get the following corollary.

Corollary 3.5.5

(i) If z �∈ FV(t), then t[a/x] = (t[z/x])[a/z],
(ii) If z �∈ FV(ϕ) and z is free for x in ϕ, then ϕ[a/x] = (ϕ[z/x])[a/z].

It is possible to pull out quantifiers from a formula. The trick is well known
in analysis: the bound variable in an integral may be changed, e.g.

∫
x dx +∫

siny dy = ∫
x dx + ∫

sinx dx = ∫
(x + sinx)dx. In predicate logic we have a

similar phenomenon.

Theorem 3.5.6 (Change of Bound Variables) If x, y are free for z in ϕ and x, y �∈
FV(ϕ), then |� ∃xϕ[x/z] ↔ ∃yϕ[y/z], |� ∀xϕ[x/z] ↔ ∀yϕ[y/z].

Proof It suffices to consider ϕ with FV(ϕ)⊆ {z}. We have to show A |� ∃xϕ[x/z] ⇔
A |� ∃yϕ[y/z] for any A. A |� ∃xϕ[x/z] ⇔A |� (ϕ[x/z])[a/x] for some a⇔A |�
ϕ[a/z] for some a ⇔A |� (ϕ[y/z])[a/y] for some a ⇔A |� ∃yϕ[y/z].

The universal quantifier is handled completely similarly. �

The upshot of this theorem is that one can always replace a bound variable by a
“fresh” one, i.e. one that did not occur in the formula. Now one easily concludes the
following.

Corollary 3.5.7 Every formula is equivalent to one in which no variable occurs
both free and bound.

1“i.h.” indicates the use of the induction hypothesis.
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We now can pull out quantifiers: ∀xϕ(x) ∨ ∀xψ(x)↔ ∀xϕ(x) ∨ ∀yψ(y) and
∀xϕ(x)∨ ∀yψ(y)↔∀xy(ϕ(x)∨ψ(y)), for a suitable y.

In order to handle predicate logic in an algebraic way we need the technique of
substituting equivalents for equivalents.

Theorem 3.5.8 (Substitution Theorem)

(i) |� t1 = t2 → s[t1/x] = s[t2/x],
(ii) |� t1 = t2 → (ϕ[t1/x] ↔ ϕ[t2/x]),

(iii) |� (ϕ↔ψ)→ (σ [ϕ/$] ↔ σ [ψ/$]).

Proof It is no restriction to assume that the terms and formulas are closed. We tacitly
assume that the substitutions satisfy the “free for” conditions.

(i) Let A |� t1 = t2, i.e. tA1 = tA2 . Now use induction on s.

• s is a constant or a variable. Trivial.
• s = F(s1, . . . , sk). Then s[ti/x] = F(s1[ti/x], . . .) and (s[ti/x])A =

F((s1[ti])A/x, . . .). Induction hypothesis: (sj [t1/x])A = (sj [t2/x])A,
1≤ j ≤ k. So (s[t1/x])A = F((s1[t1/x])A, . . .) = F((s1[t2/x])A, . . .) =
(s[t2/x])A. Hence A |� s[t1/x] = s[t2/x].

(ii) Let A |� t1 = t2, so tA1 = tA2 . We show A |� ϕ[t1/x] ⇔A |� ϕ[t2/x] by induc-
tion on ϕ.

• ϕ is atomic. The case of a propositional symbol (including ⊥) is trivial. So
consider ϕ = P (s1, . . . , sk). A |� P(s1, . . . , sk)[t1/x] ⇔ A |�
P(s1[t1/x], . . .)⇔〈(s1[t1/x])A, . . . , (sk[t1/x])A ∈ P . By (i) (sj [t1/x])A =
(sj [t2/x])A, j = 1, . . . , k.
So we get 〈(s1[t1/x])A, . . .〉 ∈ P ⇔ ·· ·⇔A |� P(s1, . . .)[t2/x].

• ϕ = ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ϕ1 → ϕ2, ¬ϕ1. We consider the disjunction: A |�
(ϕ1 ∨ ϕ2)[t1/x] ⇔A |� ϕ1[t1/x] or A |� ϕ2[t1/x] i.h.⇔. A |� ϕ1[t2/x] or A |�
ϕ2[t2/x] ⇔A |� (ϕ1 ∨ ϕ2)[t2/x].
The remaining connectives are treated similarly.

• ϕ = ∃yψ,ϕ = ∀yψ .
We consider the existential quantifier. A |� (∃yψ)[t1/x] ⇔ A |�
∃y(ψ[t1/x])⇔ A |�ψ[t1/x][a/y] for some a.
By Lemma 3.5.4 A |� ψ[t1/x][a/y] ⇔ A |� (ψ[a/y])[t1[a/y]/x]. Apply
the induction hypothesis to ψ[a/y] and the terms t1[a/y], t2[a/y]. Observe
that t1 and t2 are closed, so t1[a/y] = t1 and t2 = t2[a/y]. We get A |�
ψ[t2/x][a/y], and hence A |� ∃yψ[t2/x]. The other implication is similar,
and so is the case of the universal quantifier.

(iii) Let A |� ϕ ⇔ A |� ψ . We show A |� σ [ϕ/$] ⇔ A |� σ [ψ/$] by induction
on σ .

• σ is atomic. Both cases σ = $ and σ �= $ are trivial.
• σ = σ1�σ2 (or ¬σ1). Left to the reader.
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• σ = ∀x · τ . Observe that ϕ and ψ are closed, but even if they were not then
x could not occur free in ϕ,ψ .
A |� (∀x · τ)[ϕ/$] ⇔ A |� ∀x(τ [ϕ/$]). Pick an a ∈ |A|, then A |�
(τ [ϕ/$])[a/x] 3.5.4⇔ A |� (τ [a/x])[ϕ[a/x]/$] ⇔A |� (τ [a/x])[ϕ/$] i.h.⇔A |�
τ [a/x][ψ/$] ⇔ A |� τ [a/x][ψ[a/x]/$] ⇔ A |� (τ [ψ/$])[a/x]. Hence
A |� σ [ϕ/$] ⇔ A |� σ [ψ/$]. The existential quantifier is treated simi-
larly. �

Observe that in the above proof we have applied induction to “σ [ϕ/$] for all ϕ”,
because the substitution formula changed during the quantifier case.

Note that also the σ changed, so properly speaking we are applying induction
to the rank (or we have to formulate the induction principle 3.3.4 a bit more liber-
ally).

Corollary 3.5.9

(i) �s[t/x]� = �s[�t �/x]�,
(ii) �ϕ[t/x]� = �ϕ[�t �/x]�.

Proof We apply the Substitution Theorem. Consider an arbitrary A. Note that
� �t �� = �t � (by definition), so A |� �t � = t . Now (i) and (ii) follow immediately. �

In a more relaxed notation, we can write (i) and (ii) as �s(t)� = �s(�t �)�, or A |�
s(t)= s(�t �) and �ϕ(t)� = �ϕ(�t �)�, or A |� ϕ(t)↔ ϕ(�t �).

Observe that �t �(= �t �A) is just another way to write tA.
Proofs involving detailed analysis of substitution are rather dreary but, unfortu-

nately, unavoidable. The reader may simplify the above and other proofs by suppos-
ing the formulas involved to be closed. There is no real loss in generality, since we
only introduce a number of constants from L(A) and check that the result is valid
for all choices of constants.

Now we really can manipulate formulas in an algebraic way. Again, write ϕ ≈ ψ

for |� ϕ↔ψ .

Examples

1. ∀xϕ(x) → ψ ≈ ¬∀xϕ(x) ∨ ψ ≈ ∃x(¬ϕ(x)) ∨ ψ ≈ ∃x(¬ϕ(x) ∨ ψ) ≈
∃x(ϕ(x)→ψ), where x �∈ FV(ψ).

2. ∀xϕ(x)→∃xϕ(x)≈ ¬∀xϕ(x)∨∃xϕ(x)≈ ∃x(¬ϕ(x)∨ϕ(x)). The formula in
the scope of the quantifier is true (already by propositional logic), so the formula
itself is true.

Definition 3.5.10 A formula ϕ is in prenex (normal) form if ϕ consists of a (pos-
sibly empty) string of quantifiers followed by an open (i.e. quantifier free) formula.
We also say that ϕ is a prenex formula.
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Examples ∃x∀y∃z∃v(x = z ∨ y = z → v < y), ∀x∀y∃z(P (x, y) ∧ Q(y,x) →
P(z, z)).

By pulling out quantifiers we can reduce each formula to a formula in prenex
form.

Theorem 3.5.11 For each ϕ there is a prenex formula ψ such that |� ϕ↔ψ .

Proof First eliminate→ and ↔. Use induction on the resulting formula ϕ′.
For atomic ϕ′ the theorem is trivial. If ϕ′ = ϕ1 ∨ ϕ2 and ϕ1, ϕ2 are equivalent to

prenex ψ1,ψ2 then

ψ1 = (Q1y1) · · · (Qnyn)ψ
1,

ψ2 = (Q′
1z1) · · · (Q′

mzm)ψ2,

where Qi,Q
′
j are quantifiers and ψ1,ψ2 open. By Theorem 3.5.6 we can choose

all bound variables distinct, taking care that no variable is both free and bound.
Applying Theorem 3.5.3 we find

|� ϕ′ ↔ (Q1y1) · · · (Qnyn)
(
Q′

1z1
) · · · (Q′

mzm

)(
ψ1 ∨ψ2),

so we are done.
The remaining cases are left to the reader. �

In ordinary mathematics it is usually taken for granted that the benevolent reader
can guess the intentions of the author, not only the explicit ones, but also the ones
that are tacitly handed down generations of mathematicians. Take for example the
definition of convergence of a sequence: ∀ε > 0∃n∀m(|an− an+m|< ε). In order to
make sense out of this expression one has to add: the variables n,m range over natu-
ral numbers. Unfortunately our syntax does not allow for variables of different sorts.
So how do we incorporate expressions of the above kind? The answer is simple: we
add predicates of the desired sort and indicate inside the formula the “nature” of the
variable.

Example Let A = 〈R,Q,<〉 be the structure of the reals with the set of rational
numbers singled out, provided with the natural order. The sentence σ := ∀xy(x <

y → ∃z(Q(z) ∧ x < z ∧ z < y)) can be interpreted in A : A |� σ , and it tells us
that the rationals are dense in the reals (in the natural ordering). We find this mode
of expression, however, rather cumbersome. Therefore we introduce the notion of
relativized quantifiers. Since it does not matter whether we express informally “x
is rational” by x ∈ Q or Q(x), we will suit ourselves and at any time choose the
notation which is most convenient. We use (∃x ∈ Q) and (∀x ∈ Q) as informal
notation for “there exists an x in Q” and “for all x in Q”. Now we can write σ as
∀xy(x < y→∃z ∈Q(x < z∧z < y)). Note that we do not write (∀xy ∈R)( ),
since: (1) there is no relation R in A, (2) variables automatically range over |A| =R.

Let us now define the relativization of a quantifier properly.
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Definition 3.5.12 If P is a unary predicate symbol, then (∀x ∈ P)ϕ :=
∀x(P (x)→ ϕ), (∃x ∈ P)ϕ := (∃x)(P (x)∧ ϕ).

This notation has the intended meaning, as appears from A |� (∀x ∈ P)ϕ ⇔
for all a ∈ PA A |� ϕ[a/x], A |� (∃x ∈ P)ϕ ⇔ there exists an a ∈ PA such that
A |� ϕ[a/x]. The proof is immediate.

We will often use informal notation, such as (∀x > 0) or (∃y �= 1), which can be
cast into the above form. The meaning of such notation will always be evident. One
can restrict all quantifiers to the same set (predicate), which amounts to passing to
a restricted universe (cf. Exercise 11).

It is a common observation that by strengthening a part of a conjunction (dis-
junction) the whole formula is strengthened, but that by strengthening ϕ in ¬ϕ the
whole formula is weakened. This phenomenon has a syntactic origin, and we will
introduce a bit of terminology to handle it smoothly. We inductively define that a
subformula occurrence ϕ is positive (negative) in σ .

Definition 3.5.13 Sub+ and Sub− are defined simultaneously by

Sub+(ϕ)= {ϕ}
Sub−(ϕ)= ∅ for atomic ϕ

Sub+(ϕ1�ϕ2)= Sub+(ϕ1)∪ Sub+(ϕ2)∪ {ϕ1�ϕ2}
Sub−(ϕ1�ϕ2)= Sub−(ϕ1)∪ Sub−(ϕ2) for � ∈ {∧,∨}
Sub+(ϕ1 → ϕ2)= Sub+(ϕ2)∪ Sub−(ϕ1)∪ {ϕ1 → ϕ2}
Sub−(ϕ1 → ϕ2)= Sub+(ϕ1)∪ Sub−(ϕ2)

Sub+(Qx.ϕ)= Sub+(ϕ)∪ {Qx.ϕ}
Sub−(Qx.ϕ)= Sub−(ϕ) for Q ∈ {∀,∃}.

If ϕ ∈ Sub+(ψ), then we say that ϕ occurs positively in ψ (similarly for negative
occurrences).

We could have restricted ourselves to ∧,→ and ∀, but it does not ask much extra
space to handle the other connectives.

The following theorem makes the basic intuition clear: if a positive part of a for-
mula increases in truth value then the formula increases in truth value (better: does
not decrease in truth value). We express this role of positive and negative subformu-
las as follows.

Theorem 3.5.14 Let ϕ (ψ) not occur negatively (not positively) in σ , then:

(i) �ϕ1 � ≤ �ϕ2 � ⇒ �σ [ϕ1/ϕ]� ≤ �σ [ϕ2/ϕ]�,
(ii) �ψ1 � ≤ �ψ2 � ⇒ �σ [ψ1/ψ]� ≥ �σ [ψ2/ψ]�,

(iii) A |� (ϕ1 → ϕ2)→ (σ [ϕ1/ϕ]→ σ [ϕ2/ϕ]),
(iv) A |� (ψ1 →ψ2)→ (σ [ψ2/ψ]→ σ [ψ1/ψ]).

Proof Induction on σ . �
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Exercises

1. Show that all propositional tautologies are true in all structures (of the right
similarity type).

2. Let x �∈ FV(ψ). Show
(i) |� (∀xϕ→ψ)↔∃x(ϕ→ψ),

(ii) |� (∃xϕ→ψ)↔∀x(ϕ→ψ),
(iii) |� (ψ →∃xϕ)↔∃x(ψ → ϕ),
(iv) |� (ψ →∀xϕ)↔∀x(ψ → ϕ).

3. Show that the condition on FV(ψ) in Exercise 2 is necessary.
4. Show �|� ∀x∃yϕ↔∃y∀xϕ.
5. Show |� ϕ⇒ |� ∀xϕ and |� ∃xϕ.
6. Show �|� ∃xϕ→∀xϕ.
7. Show �|� ∃xϕ ∧ ∃xψ →∃x(ϕ ∧ψ).
8. Show that the condition on x, y in Theorem 3.5.6 is necessary.
9. Show

(i) |� ∀x(ϕ→ψ)→ (∀xϕ→∀xψ);
(ii) |� (∃xϕ→∃xψ)→∃x(ϕ→ψ);

(iii) |� ∀x(ϕ↔ψ)→ (∀xϕ↔∀xψ);
(iv) |� (∀xϕ→∃xψ)↔∃x(ϕ→ψ);
(v) |� (∃xϕ→∀xψ)→∀x(ϕ→ψ).

10. Show that the converses of Exercises 9 (i)–(iii) and (v) do not hold.
11. Let L have a unary predicate P . Define the relativization σP of σ by

σP := σ for atomic ϕ,

(ϕ�ψ)P := ϕP�ψP ,

(¬ϕ)P := ¬ϕP ,

(∀xϕ)P := ∀x(
P(x)→ ϕP

)
,

(∃xϕ)P := ∃x(
P(x)∧ ϕP

)
.

Let A be a structure without functions and constants. Consider the structure
B with universe PA and relations which are restrictions of the relations of
A, where PA �= ∅. Show A |� σP ⇔B |� σ for sentences σ . Why are only
relations allowed in A?

12. Let S be a binary predicate symbol. Show |� ¬∃y∀x(S(y, x) ↔ ¬S(x, x)).
(Think of “y shaves x” and recall Russell’s barber paradox.)

13. (i) Show that the “free for” conditions cannot be dropped from Theorem 3.5.8.
(ii) Show |� t = s⇒|� ϕ[t/x] ↔ ϕ[s/x] .

(iii) Show |� ϕ↔ψ ⇒|� σ [ϕ/$] ↔ σ [ψ/$] .
14. Find prenex normal forms for

(a) ¬((¬∀xϕ(x)∨ ∀xψ(x))∧ (∃xσ(x)→∀xτ(x))),
(b) ∀xϕ(x)↔∃xψ(x),
(c) ¬(∃xϕ(x, y)∧ (∀yψ(y)→ ϕ(x.x))→∃x∀yσ(x, y)),
(d) ((∀xϕ(x)→∃yψ(x, y))→ψ(x, x))→∃x∀yσ(x, y).

15. Show |� ∃x(ϕ(x)→∀yϕ(y)). (It is instructive to think of ϕ(x) as “x drinks”.)
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3.6 Identity

We have limited ourselves in this book to the consideration of structures with iden-
tity (see Definition 3.4.2), and hence of languages with identity. Therefore we clas-
sified “=” as a logical symbol, rather than a mathematical one. We can, however,
not treat = as just some binary predicate, since identity satisfies a number of char-
acteristic axioms, listed below.

I1 ∀x(x = x),
I2 ∀xy(x = y→ y = x),
I3 ∀xyz(x = y ∧ y = z→ x = z),
I4 ∀x1 . . . xny1 . . . yn(

∧∧
i≤nxi = yi → t (x1, . . . , xn)= t (y1, . . . , yn)),

∀x1 . . . xny1 . . . yn(
∧∧

i≤nxi = yi → (ϕ(x1, . . . , xn)→ ϕ(y1, . . . , yn))).

One simply checks that I1, I2, I3 are true in all structures A. For I4, observe
that we can suppose the formulas to be closed. Otherwise we add quantifiers for
the remaining variables and add dummy identities, e.g. ∀z1 . . . zkx1 . . . xny1 . . . yn

(
∧∧

i≤nxi = yi ∧ ∧∧
i≤kzi = zi → t (x1, . . . , xn) = t (y1, . . . , yn)). Now

(t (a1, . . . , an))
A defines a function tA on |A|n, obtained from the given func-

tions of A by various substitutions, hence ai = bi(i ≤ n) ⇒ (t (a1, . . . , an))
A =

(t (b1, . . . , bn))
A. This establishes the first part of I4.

The second part is proved by induction on ϕ (using the first part): e.g. consider the
universal quantifier case and let ai = bi for all i ≤ n. A |� ∀uϕ(u, a1, . . . , an) ⇔
A |� ϕ(c, a1, . . . , an) for all c

i.h.⇔ A |� ϕ(c, b1, . . . , bn) for all c ⇔ A |�
∀uϕ(u, b1, . . . , bn). So A |� (

∧∧
i≤nai = bi) ⇒ A |� ∀uϕ(u, a1, . . . , an) →

∀uϕ(u, b1, . . . bn). This holds for all a1, . . . , an, b1, . . . , bn, hence A |�
∀x1, . . . xny1 . . . yn(

∧∧
i≤nxi = yi → (∀uϕ(u, x1, . . . , xn)→∀uϕ(u, y1, . . . , yn))).

Note that ϕ (respectively t) in I4 can be any formula (respectively term), so
I4 stands for infinitely many axioms. We call such an “instant axiom” an axiom
schema.

The first three axioms state that identity is an equivalence relation. I4 states that
identity is a congruence with respect to all (definable) relations.

It is important to realize that from the axioms alone, we cannot determine the
precise nature of the interpreting relation. We explicitly adopt the convention that
“=” will always be interpreted by real equality. Inequality, ¬x = y, is abbreviated
as x �= y.

Exercises

1. Show |� ∀x∃y(x = y).
2. Show |� ∀x(ϕ(x)↔∃y(x = y ∧ϕ(y))) and |� ∀x(ϕ(x)↔∀y(x = y→ ϕ(y))),

where y does not occur in ϕ(x).
3. Show that |� ϕ(t)↔∀x(x = t → ϕ(x)) if x �∈ FV(t).
4. Show that the conditions in Exercises 2 and 3 are necessary.
5. Consider σ1 = ∀x(x ∼ x), σ2 = ∀xy(x ∼ y → y ∼ x), σ3 = ∀xyz(x ∼ y ∧ y ∼

z→ x ∼ z). Show that if A |� σ1 ∧ σ2 ∧ σ3, where A = 〈A,R〉, then R is an
equivalence relation. N.B. x ∼ y is a suggestive notation for the atom R(x, y).
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6. Let σ4 = ∀xyz(x ∼ y ∧ x ∼ z→ y ∼ z). Show that σ1, σ4 |� σ2 ∧ σ3.
7. Consider the schema σ5 : x ∼ y → (ϕ[x/z] → ϕ[y/z]). Show that σ1, σ5 |�

σ2 ∧ σ3. N.B. If σ is a schema, then
�∪{σ } |� ϕ stands for

�∪Σ |� ϕ, where
Σ consists of all instances of σ .

8. Derive the term version of I4 from the formula version.

3.7 Examples

We will consider languages for some familiar kinds of structures. Since all lan-
guages are built in the same way, we shall not list the logical symbols. All structures
are supposed to satisfy the identity axioms I1 − I4.

For a refinement see Lemma 3.10.2.

1. The language of identity. Type: 〈−;−;0〉.
Alphabet.
Predicate symbol: =

The structures of this type are of the form A = 〈A〉, and satisfy I1, I2, I3. (In this
language I4 follows from I1, I2, I3, cf. Sect. 3.10 Exercise 5.)

In an identity structure there is so little “structure”, that all one can virtually do is
look for the number of elements (cardinality). There are sentences λn and μn saying
that there are at least (or at most) n elements (Exercise 3, Sect. 4.1)

λn := ∃y1 . . . yn

∧∧

i �=j

yi �= yj (n > 1),

μn := ∀y0 . . . yn

∨∨

i �=j

yi = yj (n > 0).

So A |� λn ∧ μn iff |A| has exactly n elements. Since universes are not empty |�
∃x(x = x) always holds.

We can also formulate “there exists a unique x such that . . .”.

Definition 3.7.1 ∃!xϕ(x) := ∃x(ϕ(x)∧ ∀y(ϕ(y)→ x = y)), where y does not oc-
cur in ϕ(x).

Note that ∃!xϕ(x) is an (informal) abbreviation.

2. The language of partial order. Type: 〈2;−;0〉.
Alphabet.
Predicate symbols: =,≤
Abbreviations

x �= y := ¬x = y, x < y := x ≤ y ∧ x �= y,

x > y := y < x, x ≥ y := y ≤ x,

x ≤ y ≤ z := x ≤ y ∧ y ≤ z.
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Definition 3.7.2 A is a partially ordered set (poset) if A is a model of

∀xyz(x ≤ y ≤ z→ x ≤ z),

∀xy(x ≤ y ≤ x↔ x = y).

The notation may be misleading, since one usually introduces the relation ≤
(e.g. on the reals) as a disjunction: x < y or x = y. In our alphabet the relation is
primitive; another symbol might have been preferable, but we chose to observe the
tradition. Note that the relation is reflexive: x ≤ x.

Partially ordered sets are very basic in mathematics, appearing in many guises.
It is often convenient to visualize posets by means of diagrams, where a ≤ b is rep-
resented as equal or above (respectively to the right). One of the traditions in logic
is to keep objects and their names apart. Thus we speak of function symbols which
are interpreted as functions, etc. However, in practice this is a bit cumbersome. We
prefer to use the same notation for the syntactic objects and their interpretations, e.g.
if R= 〈R,≤〉 is the partially ordered set of reals, then R |� ∀x∃y(x ≤ y), whereas
it should be something like ∀x∃y(x≤y) to distinguish the symbol from the relation.

The “≤” in R stands for the actual relation and the “≤” in the sentence stands
for the predicate symbol. The reader is urged to distinguish symbols in their various
guises.

We show some diagrams of posets.

From the diagrams we can easily read off a number of properties. For example,
A1 |� ∃x∀y(x ≤ y) (Ai is the structure with the diagram of Fig. I), i.e. A1 has a
least element (a minimum). A3 |� ∀x¬∃y(x < y), i.e. in A3 no element is strictly
less than another element.

Definition 3.7.3

(i) A is a (linearly or totally) ordered set if it is a poset and A |� ∀xy(x ≤ y ∨ y ≤
x) (each two elements are comparable).

(ii) A is densely ordered if A |� ∀xy(x < y → ∃z(x < z ∧ z < y)) (between any
two elements there is a third one).

It is a moderately amusing exercise to find sentences that distinguish between
structures and vice versa. For example, we can distinguish A3 and A4 (from the
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diagram above) as follows: in A4 there is precisely one element that is incompa-
rable with all other elements, in A3 there are more such elements. Put σ(x) :=
∀y(y �= x → ¬y ≤ x ∧ ¬x ≤ y). Then A4 |� ∀xy(σ (x) ∧ σ(y) → x = y), but
A3 |� ¬∀xy(σ (x)∧ σ(y)→ x = y).

3. The language of groups. Type: 〈−;2,1;1〉.
Alphabet.
Predicate symbol: =
Function symbols: ·,−1

Constant symbol: e

Notation In order to conform with practice we write t · s and t−1 instead of ·(t, s)
and −1(t).

Definition 3.7.4 A is a group if it is a model of

∀xyz((x · y) · z= x · (y · z)),
∀x(x · e= x ∧ e · x = x),

∀x(x · x−1 = e ∧ x−1 · x = e).

When convenient, we will write ts for t · s; we will adopt the bracket conventions
from algebra. A group A is commutative or abelian if A |� ∀xy(xy = yx).

Commutative groups are often described in the language of additive groups,
which have the following alphabet:

Predicate symbol: =
Function symbols: +,−
Constant symbol: 0

4. The language of plane projective geometry. Type: 〈2;−;0〉
The structures one considers are projective planes, which are usually taken to

consist of points and lines with an incidence relation. In this approach the type
would be 〈1,1,2;−;0〉. We can, however, use a more simple type, since a point
can be defined as something that is incident with a line, and a line as something
for which we can find a point which is incident with it. Of course this requires a
non-symmetric incidence relation.

We will now list the axioms, which deviate somewhat from the traditional set. It
is a simple exercise to show that the system is equivalent to the standard sets.

Alphabet.
Predicate symbols: I,=
We introduce the following abbreviations:

Π(x) := ∃y(xIy), Λ(y) := ∃x(xIy).
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Definition 3.7.5 A is a projective plane if it satisfies

γ0 : ∀x(Π(x)↔¬Λ(x)),

γ1 : ∀xy(Π(x)∧Π(y)→∃z(xIz∧ yIz)),

γ2 : ∀uv(Λ(u)∧Λ(v)→∃x(xIu∧ xIv)),

γ3 : ∀xyuv(xIu∧ yIu∧ xIv ∧ yIv→ x = y ∨ u= v),

γ4 : ∃x0x1x2x3u0u1u2u3

(∧∧
xiIui ∧

∧∧

j=i−1(mod 3)

xiIuj ∧
∧∧

j �=i−1(mod 3)

i �=j

¬xiIuj

)

.

γ0 tells us that in a projective plane everything is either a point or a line, γ1 and γ2

tell us that “any two lines intersect in a point” and “any two points can be joined by
a line”, by γ3 this point (or line) is unique if the given lines (or points) are distinct.
Finally γ4 makes projective planes non-trivial, in the sense that there are enough
points and lines.

ΠA = {a ∈ |A||A |�Π(a)} and ΛA = {b ∈ |A||A |�Λ(b)} are the sets of points
and lines of A; IA is the incidence relation on A.

The above formalization is rather awkward. One usually employs a two-sorted
formalism, with P,Q,R, . . . varying over points and �,m,n . . . varying over lines.
The first axiom is then suppressed by convention. The remaining axioms become

γ ′1 : ∀PQ∃�(P I�∧QI�),

γ ′2 : ∀�m∃P(P I�∧ PIm),

γ ′3 : ∀PQ�m(PI�∧QI�∧ PIm∧QIm→ P =Q∨ �=m),

γ ′4 : ∃P0P1P2P3�0�1�2�3

(∧∧
PiI�i ∧

∧∧

j=i−1(mod3)

PiI�j ∧
∧∧

j �=i−1(mod 3)

i �=j

¬PiI�j

)

.

The translation from one language to the other presents no difficulty. The above ax-
ioms are different from the ones usually given in the course in projective geometry.
We have chosen these particular axioms because they are easy to formulate and also
because the duality principle follows immediately (cf. Sect. 3.10, Exercise 8). The
fourth axiom is an existence axiom, it merely says that certain things exist; it can
be paraphrased differently: there are four points no three of which are collinear (i.e.
on a line). Such an existence axiom is merely a precaution to make sure that trivial
models are excluded. In this particular case, one would not do much geometry if
there were only one triangle!

5. The language of rings with unity. Type: 〈−;2,2,1;2〉
Alphabet.
Predicate symbol: =
Function symbols: +, ·,−
Constant symbols: 0,1
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Definition 3.7.6 A is a ring (with unity) if it is a model of

∀xyz((x + y)+ z= x + (y + z)),

∀xy(x + y = y + x),

∀xyz((xy)z= x(yz)),

∀xyz(x(y + z)= xy + xz),

∀xyz((x + y)z= xz+ yz),

∀x(x + 0= x),

∀x(x + (−x)= 0),

∀x(1 · x = x ∧ x · 1= x),0 �= 1.

A ring A is commutative if A |� ∀xy(xy = yx).
A ring A is a division ring if A |� ∀x(x �= 0→∃y(xy = 1)).
A commutative division ring is called a field.

Actually it is more convenient to have an inverse function symbol available in
the language of fields, which therefore has type 〈−;2,2,1,1;2〉.

Therefore we add to the above list the sentences ∀x(x �= 0→ x · x−1 = 1∧ x−1 ·
x = 1) and 0−1 = 1.

Note that we must somehow “fix the value of 0−1”, the reason will appear in
Sect. 3.10, Exercise 2.

6. The language of arithmetic. Type 〈−;2,2,1;1〉.
Alphabet.
Predicate symbol: =
Function symbols: +, ·, S
Constant symbol: 0
(S stands for the successor function n %→ n+ 1).

Historically, the language of arithmetic was introduced by Peano with the in-
tention to describe the natural numbers with plus, times and successor up to an
isomorphism. This is in contrast to, e.g. the theory of groups, in which one tries to
capture a large class of non-isomorphic structures. It has turned out, however, that
Peano’s axioms characterize a large class of structures, which we will call (lacking
a current term) Peano structures. Whenever confusion threatens we will use the of-
ficial notation for the zero symbol: 0, but mostly we will trust the good sense of the
reader.

Definition 3.7.7 A Peano structure A is a model of

∀x(0 �= S(x)),

∀xy(S(x)= S(y)→ x = y),

∀x(x + 0= x),
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∀xy(x + S(y)= S(x + y)),

∀x(x · 0= 0),

∀xy(x · S(y)= x · y + x),

ϕ(0)∧ ∀x(ϕ(x)→ ϕ(S(x)))→∀xϕ(x).

The last axiom schema is called the induction schema or the principle of mathe-
matical induction.

It will prove convenient to introduce some notation. We define:

1 := S(0), 2 := S(1), and in general n+ 1 := S(n),

x < y := ∃z(x + Sz= y),

x ≤ y := x < y ∨ x = y.

There is one particular Peano structure which is the intended model of arithmetic,
namely the structure of the ordinary natural numbers, with the ordinary addition,
multiplication and successor (e.g. the finite ordinals in set theory). We call this
Peano structure the standard model N, and the ordinary natural numbers are called
the standard numbers.

One easily checks that nN = n and N |� n < m⇔ n < m: by definition of inter-

pretation we have 0
N = 0. Assume nN = n, then n+ 1

N = (S(n))N = nN + 1 =
n + 1. We now apply mathematical induction in the meta-language, and obtain
nN = n for all n. For the second claim see Exercise 13. In N we can define all
kinds of sets, relations and numbers. To be precise we say that a k-ary relation R in
N is defined by ϕ if 〈a1, . . . , ak〉 ∈ R⇔N |� ϕ(a1, . . . , ak). An element a ∈ |N| is
defined in N by ϕ if N |� ϕ(b)⇔ b= a, or N |� ∀x(ϕ(x)↔ x = a).

Examples

(a) The set of even numbers is defined by E(x) := ∃y(x = y + y).
(b) The divisibility relation is defined by x|y := ∃z(xz= y).
(c) The set of prime numbers is defined by P(x) := ∀yz(x = yz → y =

1∨ z= 1)∧ x �= 1.

We say that we have introduced predicates E, | and P by (explicit) definition.

7. The language of graphs

We usually think of graphs as geometric figures consisting of vertices and edges
connecting certain of the vertices. A suitable language for the theory of graphs is
obtained by introducing a predicate R which expresses the fact that two vertices are
connected by an edge. Hence, we don’t need variables or constants for edges.

Alphabet.
Predicate symbols: R,=
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Definition 3.7.8 A graph is a structure A= 〈A,R〉 satisfying the following axioms:

∀xy(R(x, y)→R(y, x))

∀x¬R(x, x).

This definition is in accordance with the geometric tradition. There are elements,
called vertices, of which some are connected by edges. Note that two vertices are
connected by at most one edge. Furthermore there is no (need for an) edge from a
vertex to itself. This is geometrically inspired; however, from the point of view of the
numerous applications of graphs it appears that more liberal notions are required.

Examples

We can also consider graphs in which the edges are directed. A directed graph
A= 〈A,R〉 satisfies only ∀x¬R(x, x).

Examples

If we drop the condition of irreflexivity then a “graph” is just a set with a binary
relation. We can generalize the notion even further, so that more edges may connect
a pair of vertices.

In order to treat those generalized graphs we consider a language with two unary
predicates V,E and one ternary predicate C. Think of V (x) as “x is a vertex”, E(x)
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as “x is an edge”, and C(x, z, y) as “z connects x and y”. A directed multigraph is
a structure = 〈A,V,E,C〉 satisfying the following axioms:

∀x(V (x)↔¬E(x)),

∀xyz(C(x, z, y)→ V (x)∧ V (y)∧E(z)).

The edges can be seen as arrows. By adding the symmetry condition,
∀xyz(C(x, z, y)→ C(y, z, x)) one obtains plain multigraphs.

Examples

Remark The nomenclature in graph theory is not very uniform. We have chosen our
formal framework such that it lends itself to treatment in first-order logic.

For the purpose of describing multigraphs a two-sorted language (cf. geometry)
is well suited. The reformulation is left to the reader.

Exercises

1. Consider the language of partial order. Define predicates for (a) x is the max-
imum; (b) x is maximal; (c) there is no element between x and y; (d) x is an
immediate successor (respectively predecessor) of y; (e) z is the infimum of x

and y.
2. Give a sentence σ such that A2 |� σ and A4 |� ¬σ (for Ai associated to the

diagrams of p. 79).
3. Let A1 = 〈N,≤〉 and A2 = 〈Z,≤〉 be the ordered sets of natural, respectively

integer, numbers. Give a sentence σ such that A1 |� σ and A2 |� ¬σ . Do the
same for A2 and B = 〈Q,≤〉 (the ordered set of rationals). N.B. σ is in the
language of posets; in particular, you may not add extra constants, function
symbols, etc., defined abbreviations are of course harmless.

4. Let σ = ∃x∀y(x ≤ y ∨ y ≤ x). Find posets A and B such that A |� σ and
B |� ¬σ .

5. Do the same for σ = ∀xy∃z[(x ≤ z∧ y ≤ z)∨ (z≤ x ∧ z≤ y)].
6. Using the language of identity structures give an (infinite) set Γ such that A is

a model of Γ iff A is infinite.
7. Consider the language of groups. Define the properties: (a) x is idempotent; (b)

x belongs to the center.
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8. Let A be a ring, give a sentence σ such that A |� σ ⇔ A is an integral domain
(has no divisors of zero).

9. Give a formula σ(x) in the language of rings such that A |� σ(a)⇔ the princi-
pal ideal (a) is prime (in A).

10. Define in the language of arithmetic: (a) x and y are relatively prime; (b) x is
the smallest prime greater than y; (c) x is the greatest number with 2x < y.

11. σ := ∀x1 . . . xn∃y1 . . . ymϕ and τ := ∃y1 . . . ymψ are sentences in a language
without identity, function symbols and constants, where ϕ and ψ are quantifier
free. Show: |� σ ⇔ σ holds in all structures with n elements. |� τ ⇔ τ holds
in all structures with 1 element.

12. Monadic predicate calculus has only unary predicate symbols (no identity).
Consider A= 〈A,R1, . . . ,Rn〉 where all Ri are sets. Define a ∼ b := a ∈Ri ⇔
b ∈ Ri for all i ≤ n. Show that ∼ is an equivalence relation and that ∼ has
at most 2n equivalence classes. The equivalence class of a is denoted by [a].
Define B =A/∼ and [a] ∈ Si ⇔ a ∈Ri,B= 〈B,S1, . . . , Sn〉. Show A |� σ ⇔
B |� σ for all σ in the corresponding language. For such σ show |� σ ⇔A |� σ

for all A with at most 2n elements. Using this fact, outline a decision procedure
for truth in monadic predicate calculus.

13. Let N be the standard model of arithmetic. Show N |� n < m⇔ n < m.
14. Let A= 〈N,<〉 and B= 〈N,&〉, where n&m iff (i) n < m and n, m both even

or both odd, or (ii) if n is even and m odd. Give a sentence σ such that A |� σ

and B |� ¬σ .
15. If 〈A,R〉 is a projective plane, then 〈A, R̆〉 is also a projective plane (the dual

plane), where R̆ is the converse of the relation R. Formulated in the two-sorted
language: if 〈AP ,AL, I 〉 is a projective plane, then so is 〈AL,AP , Ĭ 〉.

3.8 Natural Deduction

We extend the system of Sect. 2.5 to predicate logic. For reasons similar to the ones
mentioned in Sect. 2.5 we consider a language with connectives ∧,→,⊥ and ∀.
The existential quantifier is left out, but will be considered later.

We adopt all the rules of propositional logic and we add

∀I ϕ(x)

∀xϕ(x)
∀E ∀xϕ(x)

ϕ(t)

where in ∀I the variable x may not occur free in any hypothesis on which ϕ(x) de-
pends, i.e. an uncanceled hypothesis in the derivation of ϕ(x). In ∀E we, of course,
require t to be free for x.
∀I has the following intuitive explanation: if an arbitrary object x has the prop-

erty ϕ, then every object has the property ϕ. The problem is that none of the objects
we know in mathematics can be considered “arbitrary”. So instead of looking for the
“arbitrary object” in the real world (as far as mathematics is concerned), let us try
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to find a syntactic criterion. Consider a variable x (or a constant) in a derivation, are
there reasonable grounds for calling x “arbitrary”? Here is a plausible suggestion: in
the context of the derivations we shall call x arbitrary if nothing has been assumed
concerning x. In more technical terms, x is arbitrary at its particular occurrence in
a derivation if the part of the derivation above it contains no hypotheses containing
x free.

We will demonstrate the necessity of the above restrictions, keeping in mind that
the system at least has to be sound, i.e. that derivable statements should be true.
Restriction on ∀I :

[x = 0]
∀x(x = 0)

x = 0→∀x(x = 0)

∀x(x = 0→∀x(x = 0))

0= 0→∀x(x = 0)

The ∀ introduction at the first step was illegal.
So � 0= 0→∀x(x = 0), but clearly �|� 0= 0→∀x(x = 0) (take any structure

containing more than just 0).
Restriction on ∀E:

[∀x¬∀y(x = y)]
¬∀y(y = y)

∀x¬∀y(x = y)→¬∀y(y = y)

The ∀ elimination at the first step was illegal.
Note that y is not free for x in ¬∀y(x = y). The derived sentence is clearly not

true in structures with at least two elements.
We now give some examples of derivations. We assume that the reader has

enough experience by now in canceling hypotheses, so we will no longer indicate
the cancellations by encircled numbers.

[∀x∀yϕ(x, y)] ∀E∀yϕ(x, y) ∀E
ϕ(x, y) ∀I∀xϕ(x, y) ∀I∀y∀x(ϕ(x, y)) → I∀x∀yϕ(x, y)→∀y∀xϕ(x, y)

[∀x(ϕ(x)∧ψ(x))]
ϕ(x)∧ψ(x)

ϕ(x)

∀xϕ(x)

[∀x(ϕ(x)∧ψ(x)))]
ϕ(x)∧ψ(x)

ψ(x)

∀xψ(x)

∀xϕ(x)∧ ∀xψ(x)

∀x(ϕ ∧ψ)→∀xϕ ∧ ∀xψ

Let x �∈ FV(ϕ)
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[∀x(ϕ→ψ(x)))] ∀E
ϕ→ψ(x) [ϕ] →E

ψ(x) ∀I∀xψ(x) → I
ϕ→∀xψ(x)

∀x(ϕ→ψ(x))→ (ϕ→∀xψ(x))

[ϕ] ∀I∀xϕ

[∀xϕ] ∀E
ϕ

ϕ↔∀xϕ

In the right-hand derivation ∀I is allowed, since x �∈ FV(ϕ), and ∀E is applicable.
Note that ∀I in the bottom left derivation is allowed because x �∈ FV(ϕ), for at

that stage ϕ is still (part of) a hypothesis.
The reader will have grasped the technique behind the quantifier rules: reduce a

∀xϕ to ϕ and reintroduce ∀ later, if necessary. Intuitively, one makes the following
step: to show “for all x . . . x . . .” it suffices to show “. . . x . . .” for an arbitrary x. The
latter statement is easier to handle. Without going into fine philosophical distinc-
tions, we note that the distinction “for all x . . . x . . .” – “for an arbitrary x . . . x . . .”
is embodied in our system by means of the distinction. “quantified statement” –
“free variable statement”.

The reader will also have observed that under a reasonable derivation strategy,
roughly speaking, elimination precedes introduction. There is a sound explanation
for this phenomenon, its proper treatment belongs to proof theory, where normal
derivations (derivations without superfluous steps) are considered. See Chap. 7. For
the moment the reader may accept the above mentioned fact as a convenient rule of
thumb.

We can formulate the derivability properties of the universal quantifier in terms
of the relation �:

Γ � ϕ(x)⇒ Γ � ∀xϕ(x) if x �∈ FV(ψ) for all ψ ∈ Γ

Γ � ∀xϕ(x)⇒ Γ � ϕ(t) if t is free for x in ϕ.

The above implications follow directly from (∀I ) and (∀E).
Our next goal is the correctness of the system of natural deduction for predicate

logic. We first extend the definition of |�.

Definition 3.8.1 Let Γ be a set of formulas and let {xi1, xi2, . . .} =⋃{FV(ψ)|ψ ∈ Γ ∪ {σ }}. If a is a sequence (a1, a2, . . .) of elements (repetitions
allowed) of |A|, then Γ (a) is obtained from Γ by replacing simultaneously in all
formulas of Γ the xij by aj (j ≥ 1) (for Γ = {ψ} we write ψ(a)). We now define

(i) A |� Γ (a) if A |�ψ for all ψ ∈ Γ (a),
(ii) Γ |� σ if A |� Γ (a)⇒A |� σ(a) for all A,a.

In case only sentences are involved, the definition can be simplified:

Γ |� σ if A |� Γ ⇒A |� σ for all A.
If Γ = ∅, we write |� σ .
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We can paraphrase this definition as: Γ |� σ , if for all structures A and all choices
of a, σ (a) is true in A if all hypotheses of Γ (a) are true in A.

Now we can formulate the following lemma.

Lemma 3.8.2 (Soundness) Γ � σ ⇒ Γ |� σ .

Proof By definition of Γ � σ it suffices to show that for each derivation D with
hypothesis set Γ and conclusion σ Γ |� σ . We use induction on D (cf. Lemma 2.5.1
and Exercise 2).

Since we have cast our definition of satisfaction in terms of valuations, which
evidently contains the propositional logic as a special case, we can copy the cases
of (1) the one-element derivation, and (2) the derivations with a propositional rule
as the last step, from Lemma 2.6.1 (please check this claim).

So we have to treat derivations with (∀I ) or (∀E) as the final step.

(∀I ) D D has its hypotheses in Γ and x is not free in Γ.

ϕ(x) Induction hypothesis: Γ |� ϕ(x), i.e. A |� Γ (a)⇒
∀xϕ(x) A |� (ϕ(x))(a) for all A and all a.

It is no restriction to suppose that x is the first of the free variables involved (why?).
So we can substitute a1 for x in ϕ. Put a= (a1,a′). Now we have:

for all a1 and a′ = (a2, . . .) A |� Γ (a′)⇒A |� ϕ(a1)(a′), so
for all a′ A |� Γ (a′)⇒A |� (ϕ(a1))(a′) for all a1, so
for all a′ A |� Γ (a′)⇒A |� (∀xϕ(x))(a′).
This shows Γ |� ∀xϕ(x). (Note that in this proof we used ∀x(σ → τ(x))→

(σ → ∀xτ(x)), where x �∈ FV(σ ), in the meta-language. Of course we may use
sound principles on the meta-level.)

(∀E) D Induction hypothesis: Γ |� ∀xϕ(x),

∀xϕ(x) i.e. A |� Γ (a)⇒A |� (∀xϕ(x))(a),

ϕ(t) for all a and A.

So let A |� Γ (a), then A |� ϕ(b)(a) for all b ∈ |A|. In particular we may take
t[a/z] for b, where we slightly abuse the notation; since there are finitely many
variables z1, . . . , zn, we only need finitely many of the ai ’s, and therefore we con-
sider it an ordinary simultaneous substitution.

A |� (ϕ[a/z])[t[a/z]/x], hence by Lemma 3.5.4, A |� (ϕ[t/x])[a/z], or A |�
(ϕ(t))(a). �

Having established the soundness of our system, we can easily get non-
derivability results.

Examples

1. �� ∀x∃yϕ→∃y∀xϕ.
Take A= 〈{0,1}, {〈0,1〉, 〈1,0〉}〉 (type 〈2;−;0〉) and consider ϕ := P(x, y), the
predicate interpreted in A.
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A |� ∀x∃yP (x, y), since for 0 we have 〈0,1〉 ∈ P and for 1 we have 〈1,0〉 ∈ P .
But, A �|� ∃y∀xP (x, y), since for 0 we have 〈0,0〉 �∈ P and for 1 we have
〈1,1〉 �∈ P .

2. ∀xϕ(x, x),∀xy(ϕ(x, y)→ ϕ(y, x)) �� ∀xyz(ϕ(x, y)∧ ϕ(y, z)→ ϕ(x, z)).
Consider B= 〈R,P 〉 with P = {〈a, b〉 | |a − b| ≤ 1}.

Although variables and constants are basically different, they share some proper-
ties. Both constants and free variables may be introduced in derivations through ∀E,
but only free variables can be subjected to ∀I ,—that is free variables can disappear
in derivations by other than propositional means. It follows that a variable can take
the place of a constant in a derivation but in general not vice versa. We make this
precise as follows.

Theorem 3.8.3 Let x be a variable not occurring in Γ or ϕ.

(i) Γ � ϕ⇒ Γ [x/c] � ϕ[x/c].
(ii) If c does not occur in Γ , then Γ � ϕ(c)⇒ Γ � ∀xϕ(x).

Proof (ii) follows immediately from (i) by ∀I . (i) Induction on the derivation of
Γ � ϕ. Left to the reader. �

Observe that the result is rather obvious, changing c to x is just as harmless as
coloring c red—the derivation remains intact.

Exercises

1. Show:
(i) � ∀x(ϕ(x)→ψ(x))→ (∀xϕ(x)→∀xψ(x)),

(ii) � ∀xϕ(x)→¬∀x¬ϕ(x),
(iii) � ∀xϕ(x)→∀zϕ(z) if z does not occur in ϕ(x),
(iv) � ∀x∀yϕ(x, y)→∀y∀xϕ(x, y),
(v) � ∀x∀yϕ(x, y)→∀xϕ(x, x),

(vi) � ∀x(ϕ(x)∧ψ(x))↔∀xϕ(x)∧ ∀xψ(x),
(vii) � ∀x(ϕ→ψ(x))↔ (ϕ→∀xψ(x)), where x �∈ FV(ϕ).

2. Extend the definition of derivation to the present system (cf. Definition 2.4.1).
3. Show (s(t)[a/x])A = (s((t[a/x])A)[a/x])A.
4. Show the inverse implications of Theorem 3.8.3.
5. Assign to each atom P(t1, . . . , tn) a proposition symbol, denoted by P . Now

define a translation † from the language of predicate logic into the language of
propositional logic by

(P (t1, . . . , tn))
† := P and ⊥†:=⊥,

(ϕ�ψ)† := ϕ†�ψ†,

(¬ϕ)† := ¬ϕ†,

(∀xϕ)† := ϕ†.
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Show Γ � ϕ⇒ Γ † �† ϕ†, where �† stands for “derivable without using (∀I ) or
(∀E)” (does the converse hold?)
Conclude the consistency of predicate logic.
Show that predicate logic is conservative over propositional logic (cf. Defini-
tion 4.1.5).

3.9 Adding the Existential Quantifier

Let us introduce ∃xϕ as an abbreviation for ¬∀x¬ϕ (Theorem 3.5.1 tells us that
there is a good reason for doing so). We can prove the following:

Lemma 3.9.1

(i) ϕ(t) � ∃xϕ(x) (t free for x in ϕ)
(ii) Γ,ϕ(x) �ψ ⇒ Γ,∃xϕ(x) �ψ if x is not free in ψ or any formula of Γ .

Proof (i)

[∀x¬ϕ(x)] ∀E¬ϕ(t) ϕ(t) →E⊥ → I¬∀x¬ϕ(x)

so ϕ(t) � ∃xϕ(x)

(ii)

¬∀x¬ϕ(x)

[ϕ(x)]
D

ψ [¬ψ] →E⊥ → I¬ϕ(x) ∀I∀x¬ϕ(x) →E⊥
RAA

ψ
�

Explanation The subderivation top left is the given one; its hypotheses are in
Γ ∪ {ϕ(x)} (only ϕ(x) is shown). Since ϕ(x) (that is, all occurrences of it) is can-
celed and x does not occur free in Γ or ψ , we may apply ∀I . From the derivation
we conclude that Γ,∃xϕ(x) �ψ .



92 3 Predicate Logic

We can compress the last derivation into an elimination rule for ∃:

[ϕ[y/x]]
...

∃xϕ(x) ψ

ψ
∃E

with the conditions: y is not free in ψ , or in a hypothesis of the subderivation of ψ ,
other than ϕ(x).

This is easily seen to be correct since we can always fill in the missing details, as
shown in the preceding derivation.

By (i) we also have an introduction rule: ϕ(t)
∃x ϕ(x)

∃I for t free for x in ϕ.

Examples of derivations

[∃xϕ(x)]2

[∀x(ϕ(x)→ψ)]3 ∀E
ϕ(x)→ψ [ϕ(x)]1 →E

ψ ∃E1
ψ → I2∃xϕ(x)→ψ → I3∀x(ϕ(x)→ψ)→ (∃xϕ(x)→ψ)

x �∈ FV(ψ)

[∃x(ϕ(x)∨ψ(x))]3
[ϕ(x)∨ψ(x)]2

[ϕ(x)]1

∃xϕ(x)

∃xϕ(x)∨ ∃xψ(x)

[ψ(x)]1

∃xψ(x)

∃xϕ(x)∨ ∃xψ(x)
∨E1∃xϕ(x)∨ ∃xψ(x)

∃E2∃xϕ(x)∨ ∃xψ(x)
→ I3∃x(ϕ(x)∨ψ(x))→∃xϕ(x)∨ ∃xψ(x)

We will also sketch the alternative approach, that of enriching the language.

Theorem 3.9.2 Consider predicate logic with the full language and rules for all
connectives, then � ∃xϕ(x)↔¬∀x¬ϕ(x).

Proof Compare Theorem 2.6.3. �

It is time now to state the rules for ∀ and ∃ with more precision. We want to
allow substitution of terms for some occurrences of the quantified variable in (∀E)

and (∃E). The following example motivates this.

∀x(x = x) ∀E
x = x ∃I∃y(x = y))
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The result would not be derivable if we could only make substitutions for all
occurrences at the same time. Yet, the result is evidently true.

The proper formulation of the rules now is:

∀I ϕ

∀xϕ
∀E ∀xϕ

ϕ[t/x]

∃I ϕ[t/x]
∃xϕ

∃E

[ϕ]
.

.

∃xϕ ψ

ψ

with the appropriate restrictions.

Exercises

1. � ∃x(ϕ(x)∧ψ)↔∃xϕ(x)∧ψ if x �∈ FV(ψ),
2. � ∀x(ϕ(x)∨ψ)↔∀xϕ(x)∨ψ if x �∈ FV(ψ),
3. � ∀xϕ(x)↔¬∃x¬ϕ(x),
4. � ¬∀xϕ(x)↔∃x¬ϕ(x),
5. � ¬∃xϕ(x)↔∀x¬ϕ(x),
6. � ∃x(ϕ(x)→ψ)↔ (∀xϕ(x)→ψ) if x �∈ FV(ψ),
7. � ∃x(ϕ→ψ(x))↔ (ϕ→∃xψ(x)) if x �∈ FV(ϕ),
8. � ∃x∃yϕ↔∃y∃xϕ,
9. � ∃xϕ↔ ϕ if x �∈ FV(ϕ).

3.10 Natural Deduction and Identity

We will give rules, corresponding to the axioms I1 − I4 of Sect. 3.6.

RI1
x = x
x = y

RI2
y = x

x = y y = z
RI3

x = z

x1 = y1, . . . , xn = yn
RI4

t (x1, . . . , xn)= t (y1, . . . , yn)

x1 = y1, . . . , xn = yn ϕ(x1, . . . , xn)
RI4

ϕ(y1, . . . , yn)

where y1, . . . , yn are free for x1, . . . , xn in ϕ. Note that we want to allow substitution
of the variable yi (i ≤ n) for some and not necessarily all occurrences of the variable
xi . We can express this by formulating RI4 in the precise terms of the simultaneous
substitution operator:



94 3 Predicate Logic

x1 = y1, . . . , xn = yn

t[x1, . . . , xn/z1, . . . , zn] = t[y1, . . . , yn/z1, . . . , zn]
x1 = y1, . . . , xn = yn ϕ[x1, . . . , xn/z1, . . . , zn]

ϕ[y1, . . . , yn/z1, . . . , zn]
Example

x = y x2 + y2 > 12x

2y2 > 12x

x = y x2 + y2 > 12x

x2 + y2 > 12y

x = y x2 + y2 > 12x

2y2 > 12y

The above are three legitimate applications of RI4 having three different conclu-
sions.

The rule RI1 has no hypotheses, which may seem surprising, but which certainly
is not forbidden.

The rules RI4 have many hypotheses; as a consequence the derivation trees can
look a bit more complicated. Of course one can get all the benefits from RI4 by a
restricted rule, allowing only one substitution at the time.

Lemma 3.10.1 � Ii for i = 1,2,3,4.

Proof Immediate. �

We can weaken the rules RI4 slightly by considering only the simplest terms and
formulas.

Lemma 3.10.2 Let L be of type 〈r1, . . . , rn;a1, . . . , am; k〉. If the rules

x1 = y1, . . . , xri = yri P1(x1, . . . , xri )
for all i ≤ n

P1(y1, . . . , yri )

and
x1 = y1, . . . , xaj

= yaj
for all j ≤m

fj (x1, . . . , xaj
)= fj (y1, . . . , yaj

)

are given, then the rules RI4 are derivable.

Proof We consider a special case. Let L have one binary predicate symbol and one
unary function symbol.
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(i) We show x = y � t (x)= t (y) by induction on t .
(a) t (x) is a variable or a constant. Immediate.
(b) t (x)= f (s(x)). Induction hypothesis: x = y � s(x)= s(y)

[x = y]
f (x)= f (y) ∀I 2×∀xy(x = y→ f (x)= f (y))

s(x)= s(y)→ f (s(x))= f (s(y))

x = y

D

s(x)= s(y)

f (s(x))= f (s(y))

This shows x = y � f (s(x))= f (s(y)).
(ii) We show (x = (y,ϕ((x) � ϕ((y)

(a) ϕ is atomic, then ϕ = P(t, s). t and s may (in this example) con-
tain at most one variable each. So it suffices to consider x1 = y1, x2 = y2,
P(t (x1, x2), s(x1, x2)) � P(t (y1, y2), s(y1, y2)) (i.e. P(t[x1, x2/z1, z2], . . .)).

Now we get, by applying→E twice, from

[x1 = y1] [x2 = y2] [P(x1, x2)]
P(y1, y2) → I 3×

x1 = y1 → (x2 = y2 → (P (x1, x2)= P(y1, y2))) ∀I∀x1x2y1y2(x1 = y1 → (x2 = y2 → (P (x1, x2)= P(y1, y2)))) ∀E
s(x1, x2)= s(y1, y2)→ (t (x1, x2)= t (y1, y2)→ (P (sx, tx)= P(sy, ty)))

and the following two instances of (i)

x1 = y1 x2 = y2

D

s(x1, x2)= s(y1, y2)

and

x1 = y1 x2 = y2

D′

t (x1, x2)= t (y1, y2),

the required result, (P (sx, tx)= P(sy, ty)).
So

x1 = y1, x2 = y2 � P(sx, tx)→ P(sy, ty)

where

sx = s(x1, x2), sy = s(y1, y2)

tx = t (x1, x2), ty = t (y1, y2).

(b) ϕ = σ → τ .
Induction hypotheses:

(x = (y,σ ((y) � σ((x)

(x = (y, τ ((x) � τ((y)
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σ((x)→ τ((x)

(x = (y [σ((y)]
D

σ((x)

τ((x) (x = (y
D′

τ((y)

σ ((y)→ τ((y)

So (x = (y,σ ((x)→ τ((x) � σ((y)→ τ((y).
(c) ϕ = σ ∧ τ , left to the reader.
(d) ϕ = ∀zψ(z, (x)

Induction hypothesis: (x = (y, ψ(z, (x) �ψ(z, (y)

∀zψ(z, (x)

ψ(z, (x) (x = (y
D

ψ(z, (y)

∀zψ(z, (y)

So (x = (y,∀zψ(z, (x) � ∀zψ(z, (y).
This establishes, by induction, the general rule. �

Exercises

1. Show that ∀x(x = x),∀xyz(x = y ∧ z = y → x = z) � I2 ∧ I3 (using predicate
logic only).

2. Show � ∃x(t = x) for any term t . Explain why all functions in a structure are
total (i.e. defined for all arguments); what is 0−1?

3. Show � ∀z(z= x→ z= y)→ x = y.
4. Show � ∀xyz(x �= y→ x �= z∨ y �= z).
5. Show that in the language of identity I1, I2, I3 � I4.
6. Show ∀x(x = a ∨ x = b ∨ x = c) � ∀xϕ(x) ↔ (ϕ(a) ∧ ϕ(b) ∧ ϕ(c)), where

a, b, c, are constants.
7. Show

(i) ∀xy(f (x)= f (y)→ x = y), ∀xy(g(x)= g(y)→ x = y) � ∀xy(f (g(x))=
f (g(y))→ x = y),

(ii) ∀y∃x(f (x)= y),∀y∃x(g(x)= y) � ∀y∃x(f (g(x))= y).
Which properties are expressed by this exercise?

8. Prove the following duality principle for projective geometry (cf. Defini-
tion 3.7.5): If Γ � ϕ then also Γ � ϕd , where Γ is the set of axioms of projective
geometry and ϕd is obtained from ϕ by replacing each atom xIy by yIx. (Hint:
check the effect of the translation d on the derivation of ϕ from Γ .)



Chapter 4
Completeness and Applications

4.1 The Completeness Theorem

Just as in the case of propositional logic we shall show that “derivability” and “se-
mantical consequence” coincide. We will do quite a bit of work before we come
to the theorem. Although the proof of the completeness theorem is not harder than,
say, some proofs in analysis, we would advise the reader to read the statement of
the theorem but to skip the proof at the first reading and return to it later. It is more
instructive to go to the applications, and it will probably give the reader a better
feeling for the subject.

The main tool in this chapter is the following lemma.

Lemma 4.1.1 (Model Existence Lemma) If Γ is a consistent set of sentences, then
Γ has a model.

A sharper version is the following.

Lemma 4.1.2 Let L have cardinality κ . If Γ is a consistent set of sentences, then
Γ has a model of cardinality ≤ κ .

From Lemma 4.1.1 we immediately deduce Gödel’s completeness theorem.

Theorem 4.1.3 (Completeness Theorem) Γ � ϕ⇔ Γ |= ϕ.

We will now go through all the steps of the proof of the Completeness The-
orem. In this section we will consider sentences, unless we specifically mention
non-closed formulas. Furthermore “�” will stand for “derivability in predicate logic
with identity”.

Just as in the case of propositional logic we have to construct a model and the
only thing we have is our consistent theory. This construction is a kind of Baron
von Münchhausen trick; we have to pull ourselves (or rather, a model) out of the
quicksand of syntax and proof rules. The most plausible idea is to make a universe
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out of the closed terms and to define relations as the sets of (tuples of) terms in the
atoms of the theory. There are basically two things we have to take care of: (i) if the
theory tells us that ∃xϕ(x), then the model has to make ∃xϕ(x) true, and so it has to
exhibit an element (which in this case is a closed term t) such that ϕ(t) is true. This
means that the theory has to prove ϕ(t) for a suitable closed term t . This problem
is solved in Henkin theories. (ii) A model has to decide sentences, i.e. it has to say
σ or ¬σ for each sentence σ . As in propositional logic, this is handled by maximal
consistent theories.

Definition 4.1.4

(i) A theory T is a collection of sentences with the property T � ϕ ⇒ ϕ ∈ T

(a theory is closed under derivability).
(ii) A set Γ such that T = {ϕ|Γ � ϕ} is called an axiom set of the theory T . The

elements of Γ are called axioms.
(iii) T is called a Henkin theory if for each sentence ∃xϕ(x) there is a constant c

such that ∃xϕ(x)→ ϕ(c) ∈ T (such a c is called a witness for ∃xϕ(x)).

Note that T = {σ |Γ � σ } is a theory. For, if T � ϕ, then σ1, . . . , σk � ϕ for
certain σi with Γ � σi .

D1 D2 . . . Dk From the derivations D1, . . . ,Dk of Γ � σ1, . . . ,

σ1 σ2 . . . σk Γ � σk and D of σ1, . . . , σk � ϕ a derivation,
D
ϕ

of Γ � ϕ is obtained, as indicated.

Definition 4.1.5 Let T and T ′ be theories in the languages L and L′.

(i) T ′ is an extension of T if T ⊆ T ′,
(ii) T ′ is a conservative extension of T if T ′ ∩L= T (i.e. all theorems of T ′ in the

language L are already theorems of T ).

Example of a conservative extension: consider propositional logic P ′ in the lan-
guage L with →,∧,⊥,↔,¬. Then Exercise 2, Sect. 2.6, tells us that P ′ is conser-
vative over P .

Our first task is the construction of Henkin extensions of a given theory T , that is
to say: extensions of T which are Henkin theories.

Definition 4.1.6 Let T be a theory with language L. The language L∗ is obtained
from L by adding a constant cϕ for each sentence of the form ∃xϕ(x). T * is the
theory with axiom set T ∪ {∃xϕ(x)→ ϕ(cϕ)| ∃xϕ(x) closed, with witness cϕ}.

Lemma 4.1.7 T * is conservative over T .

Proof (a) Let ∃xϕ(x)→ ϕ(c) be one of the new axioms. Suppose Γ,∃xϕ(x)→
ϕ(c) � ψ , where ψ does not contain c and where Γ is a set of sentences, none of
which contains the constant c. We show Γ �ψ in a number of steps.
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1. Γ � (∃xϕ(x)→ ϕ(c))→ψ .
2. Γ � (∃xϕ(x)→ ϕ(y))→ ψ , where y is a variable that does not occur in the

associated derivation. 2 follows from 1 by Theorem 3.8.3.
3. Γ � ∀y[(∃xϕ(x)→ ϕ(y))→ψ]. This application of (∀I ) is correct, since c did

not occur in Γ .
4. Γ � ∃y(∃xϕ(x)→ ϕ(y))→ψ (cf. example of Sect. 3.9).
5. Γ � (∃xϕ(x)→∃yϕ(y))→ψ (Sect. 3.9 Exercise 7).
6. � ∃xϕ(x)→∃yϕ(y).
7. Γ �ψ (from 5,6).

(b) Let T * � ψ for a ψ ∈ L. By the definition of derivability T ∪
{σ1, . . . , σn} � ψ , where the σi are the new axioms of the form ∃xϕ(x) →
ϕ(c). We show T � ψ by induction on n. For n = 0 we are done. Let
T ∪ {σ1, . . . , σn+1} � ψ . Put T ′ = T ∪ {σ1, . . . , σn}, then T ′, σn+1 � ψ and we
may apply (a). Hence T ∪ {σ1, . . . , σn} � ψ . Now by the induction hypothesis
T �ψ . �

Although we have added a large number of witnesses to T , there is no evidence
that T * is a Henkin theory, since by enriching the language we also add new exis-
tential statements ∃xτ(x) which may not have witnesses. In order to overcome this
difficulty we iterate the above process countably many times.

Lemma 4.1.8 Define T0 := T ;Tn+1 := (Tn)*; Tω :=⋃{Tn|n ≥ 0}. Then Tω is a
Henkin theory and it is conservative over T .

Proof Call the language of Tn (resp. Tω) Ln (resp. Lω).

(i) Tn is conservative over T . Induction on n.
(ii) Tω is a theory. Suppose Tω � σ , then ϕ0, . . . , ϕn � σ for certain

ϕ0, . . . , ϕn ∈ Tω. For each i ≤ n ϕi ∈ Tmi
for some mi . Let m=max{mi |i ≤ n}.

Since Tk ⊆ Tk+1 for all k, we have Tmi
⊆ Tm(i ≤ n). Therefore Tm � σ . Tm is

(by definition) a theory, so σ ∈ Tm ⊆ Tω.
(iii) Tω is a Henkin theory. Let ∃xϕ(x) ∈ Lω, then ∃xϕ(x) ∈ Ln for some n. By

definition ∃xϕ(x)→ ϕ(c) ∈ Tn+1 for a certain c. So ∃xϕ(x)→ ϕ(c) ∈ Tω.
(iv) Tω is conservative over T . Observe that Tω � σ if Tn � σ for some n and

apply (i). �

As a corollary we get: Tω is consistent if T is so. For suppose Tω inconsistent,
then Tω �⊥. As Tω is conservative over T (and ⊥∈ L) T �⊥. Contradiction.

Our next step is to extend Tω as far as possible, just as we did in propositional
logic (2.5.7). We state a general principle.

Lemma 4.1.9 (Lindenbaum) Each consistent theory is contained in a maximally
consistent theory.

Proof We give a straightforward application of Zorn’s lemma. Let T be consistent.
Consider the set A of all consistent extensions T ′ of T , partially ordered by inclu-
sion. Claim: A has a maximal element.
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1. Each chain, i.e. linearly ordered set, in A has an upper bound. Let {Ti |i ∈ I }
be a chain. Then T ′ =⋃

Ti is a consistent extension of T containing all Ti ’s
(Exercise 2). So T ′ is an upper bound.

2. Therefore A has a maximal element Tm (Zorn’s lemma).
3. Tm is a maximally consistent extension of T . We only have to show: Tm ⊆ T ′

and T ′ ∈A, then Tm = T ′. But this is trivial as Tm is maximal in the sense of ⊆.
Conclusion: T is contained in the maximally consistent theory Tm. �

Note that in general T has many maximally consistent extensions. The above
existence is far from unique (as a matter of fact the proof of its existence essentially
uses the axiom of choice). Note, however, that if the language is countable, one can
mimic the proof of Lemma 2.5.7 and dispense with Zorn’s lemma.

We now combine the construction of a Henkin extension with a maximally con-
sistent extension. Fortunately the property of being a Henkin theory is preserved
under taking a maximally consistent extension.

Lemma 4.1.10 An extension of a Henkin theory in the same language is again a
Henkin theory.

Proof If T ′ extends the Henkin theory T in the same language, then for any ϕ we
have ∃xϕ(x)→ ϕ(c) ∈ T ⇒∃xϕ(x)→ ϕ(c) ∈ T ′. �

We now get to the proof of our main result.

Lemma 4.1.11 (Model Existence Lemma) If Γ is consistent, then Γ has a model.

Proof Let T = {σ |Γ � σ } be the theory given by Γ . Any model of T is, of course,
a model of Γ .

Let Tm be a maximally consistent Henkin extension of T (which exists by the
preceding lemmas), with language Lm.

We will construct a model of Tm using Tm itself. At this point the reader should
realize that a language is, after all, a set, that is a set of strings of symbols. So, we
will exploit this set to build the universe of a suitable model.

1. A= {t ∈ Lm|t is closed}.
2. For each function symbol f we define a function f̂ :Ak →A by f̂ (t1, . . . , tk) :=

f (t1, . . . , tk).
3. For each predicate symbol P we define a relation P̂ ⊆Ap by 〈t1, . . . , tp〉 ∈ P̂ ⇔

Tm � P(t1, . . . , tp).
4. For each constant symbol c we define a constant ĉ := c.

Although it looks as if we have created the required model, we have to improve
the result, because “=” is not interpreted as the real equality; we still have to equate
many non-identical terms. Think of 3+4= 2+5. We can only assert the following.

(a) The relation t ∼ s defined by Tm � t = s for t, s ∈ A is an equivalence re-
lation. By Lemma 3.10.1, I1, I2, I3 are theorems of Tm, so Tm � ∀x(x = x), and
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hence (by ∀E) Tm � t = t , or t ∼ t . Symmetry and transitivity follow in the same
way.

(b) ti ∼ si(i ≤ p) and 〈t1, . . . , tp〉 ∈ P̂ ⇒〈s1, . . . , sp〉 ∈ P̂ .
ti ∼ si(i ≤ k)⇒ f̂ (t1, . . . , tk)∼ f̂ (s1, . . . , sk) for all symbols P and f .

The proof is simple: use Tm � I4 (Lemma 3.10.1).
Once we have an equivalence relation, which, moreover, is a congruence with

respect to the basic relations and functions, it is natural to introduce the quotient
structure.

Denote the equivalence class of t under ∼ by [t].
Define A := 〈A/∼, P̃1, . . . , P̃n, f̃1, . . . , f̃m, {c̃i |i ∈ I }〉,where

P̃i := {〈[t1], . . . , [tri ]〉|〈t1, . . . , tri 〉 ∈ P̂i}
f̃j ([t1], . . . , [taj

])= [f̂j (t1, . . . , taj
)]

c̃i := [ĉi].
One has to show that the relations and functions on A/∼ are well defined, but that
is taken care of by (b) above.

Closed terms lead a kind of double life. On the one hand they are syntactical
objects, on the other hand they are the stuff that elements of the universe are made
from. The two things are related by tA = [t]. This is shown by induction on t .

(i) t = c, then tA = c̃= [ĉ] = [c] = [t],
(ii) t = f (t1, . . . , tk), then

tA = f̃ (t1
A, . . . , tk

A)
i.h.= f̃ ([t1], . . . , [tk])= [f̂ (t1, . . . , tk)] = [f (t1, . . . , tk)].

Furthermore we have A |= ϕ(t)⇔ A |= ϕ([t]), by the above and by Exercise 6,
Sect. 3.4.

Claim. A |= ϕ(t)⇔ Tm � ϕ(t) for all sentences ϕ in the language Lm of Tm

which, by the way, is also L(A), since each element of A/∼ has a name in Lm. We
prove the claim by induction on ϕ.

(i) ϕ is atomic. A |= P(t1, . . . , tp)⇔ 〈tA1 , . . . , tAp 〉 ∈ P̃ ⇔ 〈[t1], . . . , [tp]〉 ∈ P̃ ⇔
〈t1, . . . , tp〉 ∈ P̂ ⇔ Tm � P(t1, . . . , tp). The case ϕ =⊥ is trivial.

(ii) ϕ = σ ∧ τ . Trivial.
(iii) ϕ = σ → τ . We recall that, by Lemma 2.5.9, Tm � σ → τ ⇔ (Tm � σ ⇒

Tm � τ). Note that we can copy this result, since its proof only uses proposi-
tional logic, and hence remains correct in predicate logic.

A |=ϕ→ τ ⇔ (A |=σ ⇒A |=τ)
i.h.⇔ (Tm � σ ⇒ Tm � τ)⇔ Tm � σ → τ .

(iv) ϕ = ∀xψ(x). A |= ∀xψ(x) ⇔ A �|= ∃x¬ψ(x) ⇔ A �|= ¬ψ(a), for all
a ∈ |A| ⇔ for all a ∈ |A| A |=ψ(a). Assuming A |= ∀xψ(x), we get in partic-
ular A |= ψ(c) for the witness c belonging to ∃x¬ψ(x). By the induction hy-
pothesis: Tm � ψ(c). Tm � ∃x¬ψ(x)→¬ψ(c), so Tm � ψ(c)→¬∃¬ψ(x).
Hence Tm � ∀xϕ(x).

Conversely: Tm � ∀xψ(x)⇒ Tm �ψ(t), so Tm �ψ(t) for all closed t , and
therefore by the induction hypothesis, A |= ψ(t) for all closed t . Hence A |=
∀xψ(x).

Now we see that A is a model of Γ , as Γ ⊆ Tm. �
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The model constructed above goes by various names; it is sometimes called the
canonical model or the (closed) term model. In logic programming the set of closed
terms of any language is called the Herbrand universe or domain and the canonical
model is called the Herbrand model.

In order to get an estimation of the cardinality of the model we have to compute
the number of closed terms in Lm. As we did not change the language going from
Tω to Tm, we can look at the language Lω. We will indicate how to get the required
cardinalities, given the alphabet of the original language L. We will use the axiom
of choice freely, in particular in the form of absorption laws (i.e. κ + λ = κ · λ =
max(κ,λ) for infinite cardinals). Say L has type 〈r1, . . . , rn;a1, . . . , am;κ〉.
1. Define

TERM0 := {ci |i ∈ I } ∪ {xj |j ∈N}
TERMn+1 := TERMn ∪ {fj (t1, . . . , taj

)|j ≤m, tk ∈ TERMn for k ≤ aj }.
Then TERM =⋃{TERMn|n ∈N} (Exercise 5)
|TERM0| =max(κ,ℵ0)= μ.
Suppose |TERMn| = μ. Then |{fj (t1, . . . , taj

)|t1, . . . , taj
∈ TERMn}| =

|TERMn|aj = μaj = μ. So |TERMn+1| = μ + μ + · · · + μ (m + 1 times) =
μ. Finally |TERM| =∑

n∈N |TERMn| = ℵ0 ·μ= μ.
2. Define

FORM0 := {Pi(t1, . . . , tri )|i ≤ n, tk ∈ TERM} ∪ {⊥}
FORMn+1 := FORMn ∪ {ϕ�ψ | � ∈ {∧,→}, ϕ,ψ ∈ FORMn}

∪ {∀xiϕ|i ∈N,ϕ ∈ FORMn}.
Then FORM =⋃{FORMn|n ∈N} (Exercise 5)

As in 1, one shows |FORM| = μ.
3. The set of sentences of the form ∃xϕ(x) has cardinality μ. It trivially is ≤ μ.

Consider A= {∃xj (xj = ci)|j ∈ N, i ∈ I }. Clearly |A| = κ · ℵ0 = μ. Hence the
cardinality of the existential statements is μ.

4. L1 has the constant symbols of L, plus the witnesses. By 3 the cardinality of
the set of constant symbols is μ. Using 1 and 2 we find L0 has μ terms and μ

formulas. By induction on n each Ln has μ terms and μ formulas. Therefore Lω

has ℵ0 ·μ= μ terms and formulas. Lω is also the language of Tm.
5. Lω has at most μ closed terms. Since L1 has μ witnesses, Lω has at least μ, and

hence exactly μ closed terms.
6. The set of closed terms has ≤ μ equivalence classes under ∼, so ‖A‖ ≤ μ.

All this adds up to the strengthened version of the Model Existence Lemma.

Lemma 4.1.12 Γ is consistent ↔ Γ has a model of cardinality at most the cardi-
nality of the language.

Note the following facts:

• If L has finitely many constants, then L is countable.
• If L has κ ≥ ℵ0 constants, then |L| = κ .

The completeness theorem for predicate logic raises the same question as the
completeness theorem for propositional logic: can we effectively find a derivation
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of ϕ if ϕ is true? The problem is that we don’t have much to go on; ϕ is true in all
structures (of the right similarity type). Even though (in the case of a countable lan-
guage) we can restrict ourselves to countable structures, the fact that ϕ is true in all
those structures does not give the combinatorial information necessary to construct
a derivation for ϕ. At this stage the matter is beyond us. A treatment of the problem
belongs to proof theory.

In the case of predicate logic there are certain improvements on the complete-
ness theorem. One can, for example, ask how complicated the model is that we
constructed in the Model Existence Lemma. The proper setting for those questions
is found in recursion theory. We can, however, have a quick look at a simple case.

Let T be a decidable theory with a countable language, i.e. we have an effective
method to test membership (or, which comes to the same, we can test Γ � ϕ for
a set of axioms of T ). Consider the Henkin theory Tω introduced in Lemma 4.1.8;
σ ∈ Tω if σ ∈ Tn for a certain n. This number n can be read off from σ by inspection
of the witnesses occurring in σ . From the witnesses we can also determine which
axioms of the form ∃xϕ(x)→ ϕ(c) are involved. Let {τ1, . . . , τn} be the set of ax-
ioms required for the derivation of σ , then T ∪ {τ1, . . . , τn} � σ . By the rules of
logic this reduces to T � τ1 ∧ · · · ∧ τn → σ . Since the constants ci are new with
respect to T , this is equivalent to T � ∀z1, . . . , zk(τ

′
1 ∧ · · · ∧ τ ′n → σ ′) for suitable

variables z1, . . . , zk , where τ ′1, . . . , τ ′n, σ ′ are obtained by substitution. Thus we see
that σ ∈ Tω is decidable. The next step is the formation of a maximal extension Tm.

Let ϕ0, ϕ1, ϕ2, . . . be an enumeration of all sentences of Tω. We add sentences to
Tω in steps. Falle:

Step 0: T0 =
{

Tω ∪ {ϕ0} if Tω ∪ {ϕ0} is consistent,

Tω ∪ {¬ϕ0} else.

Step n+ 1: Tn+1 =
{

Tn ∪ {ϕn+1} if Tn ∪ {ϕn+1} is consistent,

Tn ∪ {¬ϕn+1} else.

T ◦ =⋃
Tn (T ◦ is given by a suitable infinite path in the tree). It is easily seen that

T ◦ is maximally consistent. Moreover, T ◦ is decidable. To test ϕn ∈ T ◦ we have to
test if ϕn ∈ Tn or Tn−1 ∪ {ϕn} �⊥, which is decidable. So T ◦ is decidable.
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The model A constructed in Lemma 4.1.11 is therefore also decidable in the
following sense: the operations and relations of A are decidable, which means that
〈[t1], . . . , [tp]〉 ∈ P̃ and f̃ ([t1], . . . , [tk])= [t] are decidable.

Summing up, we say that a decidable consistent theory has a decidable model
(this can be made more precise by replacing “decidable” by “recursive”).

Exercises

1. Consider the language of groups. T = {σ |A |= σ }, where A is a fixed non-trivial
group. Show that T is not a Henkin theory.

2. Let {Ti |i ∈ I } be a set of theories, linearly ordered by inclusion. Show that T =⋃{Ti |i ∈ I } is a theory which extends each Ti . If each Ti is consistent, then T is
consistent.

3. Show that λn � σ ⇔ σ holds in all models with at least n elements, μn � σ ⇔
σ holds in all models with at most n elements, λn ∧ μn � σ ⇔ σ holds in all
models with exactly n elements, {λn|n ∈N} � σ ⇔ σ holds in all infinite models
(for a definition of λn,μn cf. Sect. 3.7).

4. Show that T = {σ |λ2 � σ } ∪ {c1 �= c2} in a language with = and two constant
symbols c1, c2, is a Henkin theory.

5. Show TERM = ⋃{TERMn|n ∈ N}, FORM = ⋃{FORMn|n ∈ N} (cf. Lem-
ma 2.1.5).

6. T is a theory in the language L. Extend L to L′ by adding a set of new constants.
T ′ = {ϕ|T � ϕ ∈ L′}. Show that T ′ is conservative over T .

4.2 Compactness and Skolem–Löwenheim

Unless specified otherwise, we consider sentences in this section. From the Model
Existence Lemma we get the following.

Theorem 4.2.1 (Compactness Theorem) Γ has a model⇔ each finite subset Δ of
Γ has a model.

An equivalent formulation is:

Γ has no model⇔ some finite Δ⊆ Γ has no model.

Proof We consider the second version.
⇐: Trivial.
⇒: Suppose Γ has no model, then by the Model Existence Lemma Γ is incon-

sistent, i.e. Γ �⊥. Therefore there are σ1, . . . , σn ∈ Γ such that σ1, . . . , σn �⊥. This
shows that Δ= {σ1, . . . , σn} has no model. �

Let us introduce a bit of notation: Mod(Γ )= {A|A |= σ for all σ ∈ Γ }. For con-
venience we will often write A |= Γ for A ∈Mod(Γ ). We write Mod(ϕ1, . . . , ϕ2)

instead of Mod({ϕ1, . . . , ϕn}).
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In general Mod(Γ ) is not a set (in the technical sense of set theory: Mod(Γ ) is
most of the time a proper class). We will not worry about that since the notation is
only used as an abbreviation.

Conversely, let K be a class of structures (we have fixed the similarity type), then
Th(K)= {σ |A |= σ for all A ∈K}. We call Th(K) the theory of K.

We adopt the convention (already used in Sect. 3.7) not to include the identity
axioms in a set Γ ; these will always be satisfied.

Examples

1. Mod(∀xy(x ≤ y ∧ y ≤ x ↔ x = y),∀xyz(x ≤ y ∧ y ≤ z→ x ≤ z)) is the class
of posets.

2. Let G be the class of all groups. Th(G) is the theory of groups.

We can consider the set of integers with the usual additive group structure, but
also with the ring structure, so there are two structures A and B, of which the first
one is in a sense a part of the second (category theory uses a forgetful functor to
express this). We say that A is a reduct of B, or B is an expansion of A.

In general, we have the following definition.

Definition 4.2.2 A is a reduct of B (B an expansion of A) if |A| = |B| and more-
over all relations, functions and constants of A occur also as relations, functions and
constants of B.

Notation (A, S1, . . . , Sn, g1, . . . , gm, {aj |j ∈ J }) is the expansion of A with the in-
dicated extras.

In the early days of logic (before “model theory” was introduced) Skolem (1920)
and Löwenheim (1915) studied the possible cardinalities of models of consistent
theories. The following generalization follows immediately from the preceding re-
sults.

Theorem 4.2.3 (Downward Skolem–Löwenheim Theorem) Let Γ be a set of sen-
tences in a language of cardinality κ , and let κ < λ. If Γ has a model of cardinal-
ity λ, then Γ has a model of cardinality κ ′, for all κ ′ with κ ≤ κ ′ < λ.

Proof Add to the language L of Γ a set of fresh constants (not occurring in the
alphabet of L) {ci |i ∈ I } of cardinality κ ′, and consider Γ ′ = Γ ∪ {ci �= cj |i, j ∈ I,

i �= j}. Claim: Mod(Γ ′) �= ∅.
Consider a model A of Γ of cardinality λ. We expand A to A′ by adding κ ′

distinct constants (this is possible: |A| contains a subset of cardinality κ ′). A′ ∈
Mod(Γ ) (cf. Exercise 3) and A′ |= ci �= cj (i �= j). Consequently Mod(Γ ′) �= ∅.
The cardinality of the language of Γ ′ is κ ′. By the Model Existence Lemma Γ ′ has
a model B′ of cardinality ≤ κ ′, but, by the axioms ci �= cj , the cardinality is also
≥ κ ′. Hence B′ has cardinality κ ′. Now take the reduct B of B′ in the language of
Γ , then B ∈Mod(Γ ) (Exercise 3). �



106 4 Completeness and Applications

Examples

1. The theory of real numbers, Th(R), in the language of fields, has a countable
model.

2. Consider Zermelo–Fraenkel’s set theory ZF. If Mod(ZF) �= ∅, then ZF has a
countable model. This fact was discovered by Skolem. Because of its baffling
nature, it was called Skolem’s paradox. One can prove in ZF the existence of un-
countable sets (e.g. the continuum); how can ZF then have a countable model?
The answer is simple: countability as seen from outside and from inside the
model is not the same. To establish countability one needs a bijection to the nat-
ural numbers. Apparently a model can be so poor that it misses some bijections
which do exist outside the model.

Theorem 4.2.4 (Upward Skolem–Löwenheim Theorem) Let Γ have a language L

of cardinality κ , and A ∈Mod(Γ ) with cardinality λ≥ κ . For each μ > λ Γ has a
model of cardinality μ.

Proof Add μ fresh constants ci, i ∈ I to L and consider Γ ′ = Γ ∪ {ci �= cj |i �=
j, i, j ∈ I }. Claim: Mod(Γ ′) �= ∅. We apply the Compactness Theorem.

Let Δ ⊆ Γ ′ be finite. Say Δ contains new axioms with constants ci0, . . . , cik ,
then Δ⊆ Γ ∪ {cip �= ciq |p,q ≤ k} = Γ0. Clearly each model of Γ0 is a model of Δ

(Exercise 1 (i)).
Now take A and expand it to A′ = (A, a1, . . . , ak), where the ai are distinct.
Then obviously A′ ∈Mod(Γ0), so A′ ∈Mod(Δ). By the Compactness Theorem

there is a B′ ∈ Mod(Γ ′). The reduct B of A′ to the (type of the) language L is
a model of Γ . From the extra axioms in Γ ′ it follows that B′, and hence B, has
cardinality ≥ μ.

We now apply the Downward Skolem–Löwenheim Theorem and obtain the ex-
istence of a model of Γ of cardinality μ. �

We now list a number of applications.

Application I. Non-standard Models of PA

Corollary 4.2.5 Peano arithmetic has non-standard models.

Let P be the class of all Peano structures. Put PA = Th(P). By the Complete-
ness Theorem PA = {σ |Σ � σ } where Σ is the set of axioms listed in Sect. 3.7,
Example 6. PA has a model of cardinality ℵ0 (the standard model N), so by the
Upward Skolem–Löwenheim Theorem it has models of every cardinality κ > ℵ0.
These models are clearly not isomorphic to N. For more see page 114.

Application II. Finite and Infinite Models

Lemma 4.2.6 If Γ has arbitrarily large finite models, then Γ has an infinite model.
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Proof Put Γ ′ = Γ ∪ {λn|n > 1}, where λn expresses the sentence “there are at least
n distinct elements”, cf. Sect. 3.7, Example 1. Apply the Compactness Theorem. Let
Δ⊆ Γ ′ be finite, and let λm be the sentence λn in Δ with the largest index n. Verify
that Mod(Δ) ⊇ Mod(Γ ∪ {λm}). Now Γ has arbitrarily large finite models, so Γ

has a model A with at least m elements, i.e. A ∈Mod(Γ ∪ {λm}). So Mod(Δ) �= ∅.
By compactness Mod(Γ ′) �= ∅, but by virtue of the axioms λm, a model of Γ ′ is

infinite. Hence Γ ′, and therefore Γ , has an infinite model. �

We get the following simple corollary.

Corollary 4.2.7 If K contains arbitrarily large finite models, then, in the language
of the class, there is no set Σ of sentences, such that A ∈Mod(Σ)⇔A is finite and
A ∈K.

Proof Immediate. �

We can paraphrase the result as follows: the class of finite structures in such a
class K is not axiomatizable in first-order logic.

We all know that finiteness can be expressed in a language that contains variables
for sets or functions (e.g. Dedekind’s definition), so the inability to characterize the
notion of finite is a specific defect of first-order logic. We say that finiteness is not a
first-order property.

The corollary applies to numerous classes, e.g. groups, rings, fields, posets and
sets (identity structures).

Application III. Axiomatizability and Finite Axiomatizability

Definition 4.2.8 A class K of structures is (finitely) axiomatizable if there is a (fi-
nite) set Γ such that K =Mod(Γ ). We say that Γ axiomatizes K; the sentences of
Γ are called axioms (cf. Definition 4.1.4).

Examples of axiom sets Γ for the classes of posets, ordered sets, groups and
rings are listed in Sect. 3.7.

The following fact is very useful.

Lemma 4.2.9 If K=Mod(Γ ) and K is finitely axiomatizable, then K is axiomati-
zable by a finite subset of Γ .

Proof Let K =Mod(Δ) for a finite Δ, then K =Mod(σ ), where σ is the conjunc-
tion of all sentences of Δ (Exercise 4). Then σ |=ψ for all ψ ∈ Γ and Γ |= σ , hence
also Γ � σ . Thus there are finitely many ψ1, . . . ,ψk ∈ Γ such that ψ1, . . . ,ψk � σ .
Claim K=Mod(ψ1, . . . ,ψk).

(i) {ψ1, . . . ,ψk} ⊆ Γ so Mod(Γ )⊆Mod(ψ1, . . . ,ψk).
(ii) From ψ1, . . . ,ψk � σ it follows that Mod(ψ1, . . . ,ψk)⊆Mod(σ ).

Using (i) and (ii) we conclude that Mod(ψ1, . . . ,ψk)=K. �
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The following lemma is instrumental in proving non-finite axiomatizability re-
sults. We need one more fact.

Lemma 4.2.10 K is finitely axiomatizable ⇔ K and its complement Kc are both
axiomatizable.

Proof ⇒. Let K=Mod(ϕ1, . . . , ϕn), then K=Mod(ϕ1 ∧ · · · ∧ ϕk). A ∈Kc (com-
plement of K)⇔ A �|= ϕ1∧· · ·∧ϕn⇔A |= ¬(ϕ1∧· · ·∧ϕn). So Kc =Mod(¬(ϕ1∧
· · · ∧ ϕn)).
⇐. Let K = Mod(Γ ),Kc = Mod(Δ). K ∩ Kc = Mod(Γ ∪ Δ) = ∅ (Exer-

cise 1). By compactness, there are ϕ1, . . . , ϕn ∈ Γ and ψ1, . . . ,ψm ∈ Δ such that
Mod(ϕ1, . . . , ϕn,ψ1, . . . ,ψm)= ∅, or

Mod(ϕ1, . . . , ϕn)∩Mod(ψ1, . . . ,ψm)= ∅, (1)

K=Mod(Γ )⊆Mod(ϕ1, . . . , ϕn), (2)

Kc =Mod(Δ)⊆Mod(ψ1, . . . ,ψm), (3)

(1), (2), (3)⇒K =Mod(ϕ1, . . . , ϕn). �

We now get a number of corollaries.

Corollary 4.2.11 The class of all infinite sets (identity structures) is axiomatizable,
but not finitely axiomatizable.

Proof A is infinite ⇔ A ∈ Mod({λn|n ∈ N}). So the axiom set is {λn|n ∈ N}. On
the other hand the class of finite sets is not axiomatizable, so, by Lemma 4.2.10, the
class of infinite sets is not finitely axiomatizable. �

Corollary 4.2.12

(i) The class of fields of characteristic p(> 0) is finitely axiomatizable.
(ii) The class of fields of characteristic 0 is axiomatizable but not finitely axioma-

tizable.
(iii) The class of fields of positive characteristic is not axiomatizable.

Proof (i) The theory of fields has a finite set Δ of axioms. Δ∪ {p = 0} axiomatizes
the class Fp of fields of characteristic p (where p stands for 1+ 1+· · ·+ 1, (p×)).

(ii) Δ∪ {2 �= 0,3 �= 0, . . . , p �= 0, . . . } axiomatizes the class F0 of fields of char-
acteristic 0. Suppose F0 was finitely axiomatizable, then by Lemma 4.2.9 F0 was
axiomatizable by Γ =Δ∪ {p1 �= 0, . . . , pk �= 0}, where p1, . . . , pk are primes (not
necessarily the first k ones). Let q be a prime greater than all pi (Euclid). Then
Z/(q) (the integers modulo q) is a model of Γ , but Z/(q) is not a field of charac-
teristic 0. Contradiction.

(iii) Follows immediately from (ii) and Lemma 4.2.10. �
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Corollary 4.2.13 The class Ac of all algebraically closed fields is axiomatizable,
but not finitely axiomatizable.

Proof Let σn = ∀y1 . . . yn∃x(xn + y1x
n−1 + · · · + yn−1x + yn = 0). Then Γ =

Δ ∪ {σn|n ≥ 1} (Δ as in Corollary 4.2.12) axiomatizes Ac. To show non-finite ax-
iomatizability, apply Lemma 4.2.9 to Γ and find a field in which a certain polyno-
mial does not factorize. �

Corollary 4.2.14 The class of all torsion-free abelian groups is axiomatizable, but
not finitely axiomatizable.

Proof Exercise 15. �

Remark In Lemma 4.2.9 we used the Completeness Theorem and in Lemma 4.2.10
the Compactness Theorem. The advantage of using only the Compactness Theorem
is that one avoids the notion of provability altogether. The reader might object that
this advantage is rather artificial since the Compactness Theorem is a corollary to the
Completeness Theorem. This is true in our presentation; one can, however, derive
the Compactness Theorem by purely model theoretic means (using ultraproducts,
cf. Chang–Keisler), so there are situations where one has to use the Compactness
Theorem. For the moment the choice between using the Completeness Theorem or
the Compactness Theorem is largely a matter of taste or convenience.

By way of illustration we will give an alternative proof of Lemma 4.2.9 using the
Compactness Theorem.

Again we have Mod(Γ )=Mod(σ )(∗). Consider Γ ′ = Γ ∪ {¬σ }.
A ∈Mod(Γ ′) ⇔ A ∈Mod(Γ ) and A |= ¬σ,

⇔ A ∈Mod(Γ ) and A �∈Mod(σ ).

In view of (∗) we have Mod(Γ ′)= ∅.
By the Compactness Theorem there is a finite subset Δ of Γ ′ with Mod(Δ)= ∅.

It is no restriction to suppose that ¬σ ∈Δ, hence Mod(ψ1, . . . ,ψk,¬σ)= ∅. It now
easily follows that Mod(ψ1, . . . ,ψk)=Mod(σ )=Mod(Γ ).

Application IV. Ordering Sets One easily shows that each finite set can be or-
dered; for infinite sets this is harder. A simple trick is presented below.

Theorem 4.2.15 Each infinite set can be ordered.

Proof Let |X| = κ ≥ ℵ0. Consider Γ , the set of axioms for linear order (3.7.3). Γ

has a countable model, e.g. N. By the Upward Skolem–Löwenheim Theorem Γ

has a model A= 〈A,<〉 of cardinality κ . Since X and A have the same cardinality
there is a bijection f :X→ A. Define x <X x′ := f (x) < f (x′). Evidently, <X is
a linear order. �
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In the same way one gets: Each infinite set can be densely ordered. The same
trick works for axiomatizable classes in general.

Exercises

1. Show:
(i) Γ ⊆Δ⇒Mod(Δ)⊆Mod(Γ ),

(ii) K1 ⊆K2 ⇒ Th(K2)⊆ Th(K1),
(iii) Mod(Γ ∪Δ)=Mod(Γ )∩Mod(Δ),
(iv) Th(K1 ∪K2)= Th(K1)∩ Th(K2),
(v) K⊆Mod(Γ )⇔ Γ ⊆ Th(K),

(vi) Mod(Γ ∩Δ)⊇Mod(Γ )∪Mod(Δ),
(vii) Th(K1 ∩K2)⊇ Th(K1)∪ Th(K2).
Show that in (vi) and (vii) ⊇ cannot be replaced by =.

2. (i) Γ ⊆ Th(Mod(Γ )),
(ii) K⊆Mod(Th(K)),

(iii) Th(Mod(Γ )) is a theory with axiom set Γ .
3. If A with language L is a reduct of B, then A |= σ ⇔B |= σ for σ ∈ L.
4. Mod(ϕ1, . . . , ϕn)=Mod(ϕ1 ∧ · · · ∧ ϕn).
5. Γ |= ϕ ⇒ Δ |= ϕ for a finite subset Δ ⊆ Γ . (Give one proof using complete-

ness, another proof using compactness on Γ ∪ {¬ϕ}.)
6. Show that well-ordering is not a first-order notion. Suppose that Γ axiomatizes

the class of well-orderings. Add countably many constants ci and show that
Γ ∪ {ci+1 < ci |i ∈N } has a model.

7. If Γ has only finite models, then there is an n such that each model has at most
n elements.

8. Let L have the binary predicate symbol P . σ := ∀x¬P(x, x)∧∀xyz(P (x, y)∧
P(y, z)→ P(x, z)) ∧ ∀x∃yP (x, y). Show that Mod(σ ) contains only infinite
models.

9. Show that σ ∨ ∀xy(x = y) has infinite models and a finite model, but no arbi-
trarily large finite models (σ as in Exercise 8).

10. Let L have one unary function symbol.
(i) Write down a sentence ϕ such that A |= ϕ⇔ fA is a surjection.

(ii) Idem for an injection.
(iii) Idem for a bijection (permutation).
(iv) Use (ii) to formulate a sentence σ such that (a) A |= σ ⇒ A is infinite,

(b) each infinite set can be expanded to a model of σ (Dedekind).
(v) Show that each infinite set carries a permutation without fixed points (cf.

the proof of Theorem 4.2.15).
11. Show: σ holds for fields of characteristic zero ⇒ σ holds for all fields of char-

acteristic q > p for a certain p.
12. Consider a sequence of theories Ti such that Ti �= Ti+1 and Ti ⊆ Ti+1. Show

that
⋃{Ti |i ∈N } is not finitely axiomatizable.

13. If T1 and T2 are theories such that Mod(T1∪T2)= ∅, then there is a σ such that
T1 |= σ and T2 |= ¬σ .
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14. (i) A group can be ordered ⇔ each finitely generated subgroup can be or-
dered.

(ii) An abelian group A can be ordered ⇔ A is torsion free. (Hint: look at all
closed atoms of L(A) true in A.)

15. Prove Corollary 4.2.14.
16. Show that each countable, ordered set can be embedded in the rationals.
17. Show that the class of trees cannot be axiomatized. Here we define a tree as a

structure 〈T ,≤, t〉, where ≤ is a partial order, such that for each a the predeces-
sors form a finite chain a = an < an−1 < · · ·< a1 < a0 = t . Moreover, no two
incomparable elements have a common successor. t is called the top.

18. A graph (with symmetric and irreflexive R) is called k-colorable if we can paint
the vertices with k-different colors such that adjacent vertices have distinct col-
ors. We formulate this by adding k unary predicates C1, . . . ,Ck , plus the fol-
lowing axioms:

∀x
∨∨

i

Ci(x),∀x
∧∧

i �=j

¬(
Ci(x)∧Cj (x)

)
,

∧∧

i

∀xy
(
Ci(x)∧Ci(y)→¬R(x, y)

)
.

Show that a graph is k-colorable if each finite subgraph is k-colorable (De
Bruijn–Erdös).

4.3 Some Model Theory

In model theory one investigates the various properties of models (structures), in
particular in connection with the features of their language. One could say that alge-
bra is a part of model theory; some parts of algebra indeed belong to model theory,
other parts only in the sense of the limiting case in which the role of language is
negligible. It is the interplay between language and models that makes model the-
ory fascinating. Here we will only discuss the very beginnings of the topic.

In algebra one does not distinguish structures which are isomorphic; the nature
of the objects is purely accidental. In logic we have another criterion: we distinguish
between two structures by exhibiting a sentence which holds in one but not in the
other. So, if A |= σ ⇔B |= σ for all σ , then we cannot (logically) distinguish A

and B.

Definition 4.3.1 (i) f : |A| → |B| is a homomorphism if for all Pi 〈a1, . . . , ak〉 ∈
PA

i ⇒ 〈f (a1), . . . , f (ak)〉 ∈ PB
i , if for all Fj f (FA

j (a1, . . . , ap)) = FB
j (f (a1),

. . . , f (ap)) and if for all ci f (cAi )= cBi .
(ii) f is an isomorphism if it is a homomorphism which is bijective and satisfies

〈a1, . . . , an〉 ∈ PA
i ⇔〈f (a1), . . . , f (an)〉 ∈ PB

i , for all Pi .
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We write f : A→B if f is a homomorphism from A to B. A ∼=B stands for
“A is isomorphic to B”, i.e. there is an isomorphism f :A→B.

Definition 4.3.2 A and B are elementarily equivalent if for all sentences σ

of L,A |= σ ⇔B |= σ .

Notation A≡B. Note that A≡B⇔ Th(A)= Th(B).

Lemma 4.3.3 A∼=B⇒A≡B.

Proof Exercise 2. �

Definition 4.3.4 A is a substructure (submodel) of B (of the same type) if
|A| ⊆ |B| and for all Pi,Fj : PB

i ∩ |A|ni = PA
i , FB

j ↑ |A|nj = FA
j and cAi = cBi

(where ni, nj are the number of arguments of Pi,Fj ).

Notation A⊆B. Note that it is not sufficient for A to be contained in B “as a set”;
the relations and functions of B have to be extensions of the corresponding ones on
A, in the specific way indicated above.

Examples The field of rationals is a substructure of the field of reals, but not of the
ordered field of reals. Let A be the additive group of rationals, B the multiplicative
group of non-zero rationals. Although |B| ⊆ |A|, B is not a substructure of A.
The well-known notions of subgroups, subrings, subspaces, all satisfy the above
definition.

The notion of elementary equivalence only requires that sentences (which do not
refer to specific elements, except for constants) are simultaneously true in two struc-
tures. We can sharpen the notion, by considering A⊆B and by allowing reference
to elements of |A|.

Definition 4.3.5 A is an elementary substructure of B (or B is an elementary ex-
tension of A) if A ⊆B and for all ϕ(x1, . . . , xn) in L and a1, . . . , an ∈ |A|,A |=
ϕ(a1, . . . , an)⇔B |= ϕ(a1, . . . , an).

Notation A≺B.

We say that A and B have the same true sentences with parameters in A.

Fact 4.3.6 A≺B⇒A≡B.

The converse does not hold (cf. Exercise 4).
Since we will often join all elements of |A| to A as constants, it is convenient to

have a special notation for the enriched structure: Â= (A, |A|).
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If one wants to describe a certain structure A, one has to specify all the basic rela-
tionships and functional relations. This can be done in the language L(A) belonging
to A (which, incidentally, is the language of the type of Â).

Definition 4.3.7 The diagram, Diag(A), is the set of closed atoms and negations of
closed atoms of L(A), which are true in A. The positive diagram, Diag+(A), is the
set of closed atoms ϕ of L(A) such that A |= ϕ.

Examples

1. A= 〈N〉.Diag(A)= {n= n|n ∈N} ∪ {n �=m|n �=m;n,m ∈N}.
2. B = 〈{1,2,3},<〉. (natural order). Diag(B) = {1 = 1, 2 = 2, 3 = 3, 1 �= 2,

1 �= 3,2 �= 3, 2 �= 1, 3 �= 1, 3 �= 2, 1 < 2, 1 < 3, 2 < 3, ¬2 < 1,¬3 < 2,

¬3 < 1, ¬1 < 1, ¬2 < 2, ¬3 < 3}.

Diagrams are useful for many purposes. We demonstrate one here: we say that
A is isomorphically embedded in B if there is an isomorphism f from A into a
substructure of B.

Lemma 4.3.8 A is isomorphically embedded in B⇔ B̂ is a model of Diag(A).

Proof ⇒. Let f be an isomorphic embedding of A in B, then A |= Pi(a1, . . . , an)

⇔ B |= Pi(f (a1), . . . , f (an)) and A |= t (a1, . . . , an) = s(a1, . . . , an) ⇔
B |= t (f (a1), . . . ) = s(f (a1), . . . ) (cf. Exercise 2). By interpreting a as f (a) in

B̂ (i.e. aB̂ = f (a)), we immediately see B̂ |=Diag(A).
⇐: Let B̂ |=Diag(A). Define a mapping f : |A| → |B| by f (a)= (a)B. Then,

clearly, f satisfies the conditions of Definition 4.3.1 on relations and functions
(since they are given by atoms and negations of atoms). Moreover if a1 �= a2 then
A |= ¬a1 = a2, so B̂ |= ¬a1 = a2.

Hence aB1 �= aB2 , and thus f (a1) �= f (a2). This shows that f is an isomor-
phism. �

We will often identify A with its image under an isomorphic embedding into B,
so that we may consider A as a substructure of B.

We have a similar criterion for elementary extension. We say that A is elementar-
ily embeddable in B if A∼= A′ and A′ ≺B for some A′. Again, we often simplify
matters by just writing A≺B when we mean “elementarily embeddable”.

Lemma 4.3.9 A≺B⇔ B̂ |= Th(Â).

N.B. A≺B holds “up to isomorphism”. B̂ is supposed to be of a similarity type
which admits at least constants for all constant symbols of L(A).

Proof ⇒. Let ϕ(a1, . . . , an) ∈ Th(Â), then A |= ϕ(a1, . . . , an), and hence B̂ |=
ϕ(a1, . . . , an). So B̂ |= Th(Â).
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⇐. By Lemma 4.3.8, A⊆B (up to isomorphism). The reader can easily finish
the proof now. �

We now give some applications.

Application I. Non-standard Models of Arithmetic Recall that N = 〈N,+, ·,
s,0〉 is the standard model of arithmetic. We know that it satisfies Peano’s axioms
(cf. Example 6, Sect. 3.7). We use the abbreviations introduced in Sect. 3.7.

Let us now construct a non-standard model. Consider T = Th(N̂). By the
Skolem–Löwenheim Theorem T has an uncountable model M. Since M |= Th(N̂),
we have, by Lemma 4.3.9, N ≺M. Observe that N �∼=M (why?). Let us have a
closer look at the way in which N is embedded in M.

We note that N |= ∀xyz(x < y ∧ y < z→ x < z) (1)

N |= ∀xyz(x < y ∨ x = y ∨ y < x) (2)

N |= ∀x(0≤ x) (3)

N |= ¬∃x(n < x ∧ x < n+ 1) (4)

Hence, N being an elementary substructure of M, we have (1) and (2) for M,
i.e. M is linearly ordered. From N ≺M and (3) we conclude that 0 is the first
element of M. Furthermore, (4) with N ≺M tells us that there are no elements of
M between the “standard natural numbers”.

As a result we see that N is an initial segment of M:

standard numbers
︷ ︸︸ ︷. . . . ...................................

non-standard numbers
︷ ︸︸ ︷..........................

Remark It is important to realize that (1)–(4) are not only true in the standard
model, but even provable in PA. This implies that they hold not only in elemen-
tary extensions of N, but in all Peano structures. The price one has to pay is the
actual proving of (1)–(4) in PA, which is more cumbersome than merely establish-
ing their validity in N. However, anyone who can give an informal proof of these
simple properties will find out that it is just one more (tedious, but not difficult)
step to formalize the proof in our natural deduction system. Step-by-step proofs are
outlined in the Exercises 27, 28.

So, all elements of |M|−|N|, the non-standard numbers, come after the standard
ones. Since M is uncountable, there is at least one non-standard number a. Note that
n < a for all n, so M has a non-archimedean order (recall that n = 1+ 1+ · · · +
1(n×)).

We see that the successor S(n)(= n+ 1) of a standard number is standard. Fur-
thermore N |= ∀x(x �= 0→∃y(y + 1 = x)), so, since N ≺M, also M |= ∀x(x �=
0 → ∃y(y + 1 = x)), i.e. in M each number, distinct from zero, has a (unique)
predecessor. Since a is non-standard it is distinct from zero, hence it has a pre-
decessor, say a1. Since successors of standard numbers are standard, a1 is non-
standard. We can repeat this procedure indefinitely and obtain an infinite descending
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sequence a > a1 > a2 > a3 > · · · of non-standard numbers. Conclusion: M is not
well-ordered.

However, non-empty definable subsets of M do possess a least element. For, such
a set is of the form {b|M |= ϕ(b)}, where ϕ ∈ L(N), and we know N |= ∃xϕ(x)→
∃x(ϕ(x) ∧ ∀y(ϕ(y)→ x ≤ y)). This sentence also holds in M and it tells us that
{b|M |= ϕ(b)} has a least element if it is not empty.

The above construction not merely gave a non-standard Peano structure (cf.
Corollary 4.2.5), but also a non-standard model of true arithmetic, i.e. it is a model
of all sentences true in the standard model. Moreover, it is an elementary extension.

The non-standard models of PA that are elementary extensions of N are the ones
that can be handled most easily, since the facts from the standard model carry over.
There are also quite a number of properties that have been established for non-
standard models in general. We treat two of them here.

Theorem 4.3.10 The set of standard numbers in a non-standard model is not defin-
able.

Proof Suppose there is a ϕ(x) in the language of PA, such that: M |= ϕ(a) ⇔
“a is a standard natural number”, then ¬ϕ(x) defines the non-standard numbers.
Since PA proves the least number principle, we have M |= ∃x(¬ϕ(x) ∧ ∀y <

xϕ(y)), or there is a least non-standard number. However, as we have seen above,
this is not the case. So there is no such definition. �

A simple consequence is the following.

Lemma 4.3.11 (Overspill Lemma) If ϕ(n) holds in a non-standard model for in-
finitely many finite numbers n, then ϕ(a) holds for at least one infinite number a.

Proof Suppose that for no infinite a ϕ(a) holds, then ∃y(x < y ∧ ϕ(y)) defines
the set of standard natural numbers in the model. This contradicts the preceding
result. �

Our technique of constructing models yields various non-standard models of
Peano arithmetic. We have at this stage no means to decide if all models of PA are
elementarily equivalent or not. The answer to this question is provided by Gödel’s
incompleteness theorem, which states that there is a sentence γ such that PA �� γ

and PA �� ¬γ . The incompleteness of PA has been re-established by quite different
means by Paris–Kirby–Harrington, Kripke and others. As a result we now have ex-
amples for γ , which belong to “normal mathematics”, whereas Gödel’s γ , although
purely arithmetical, can be considered as slightly artificial, cf. Barwise, Handbook
of Mathematical Logic, D8. PA has a decidable (recursive) model, namely the stan-
dard model. That, however, is the only one. By Tennenbaum’s theorem all non-
standard models of PA are undecidable (not recursive).



116 4 Completeness and Applications

Application II. Non-standard Real Numbers Similarly to the above applica-
tion, we can introduce non-standard models for the real number system. We use the
language of the ordered field R of real numbers, and for convenience we use the
function symbol, | |, for the absolute value function. By the Skolem–Löwenheim
Theorem there is a model ∗R of Th(R̂) such that ∗R has greater cardinality than R.
Applying Lemma 4.3.9, we see that R ≺ ∗R, so ∗R is an ordered field, containing
the standard real numbers. For cardinality reasons there is an element a ∈ |∗R|−|R|.
For the element a there are two possibilities:

(i) |a|> |r| for all r ∈ |R|,
(ii) there is an r ∈ |R| such that |a|< r .

In the second case {u ∈ |R| | u < |a|} is a bounded, non-empty set, which there-
fore has a supremum s (in R). Since |a| is a non-standard number, there is no stan-
dard number between s and |a|. By ordinary algebra, there is no standard number
between 0 and | |a|− s |. Hence ||a|− s|−1 is larger than all standard numbers. So in
case (ii) there is also a non-standard number greater than all standard numbers. El-
ements satisfying the condition (i) above, are called infinite and elements satisfying
(ii) are called finite (note that the standard numbers are finite).

We now list a number of facts, leaving the (fairly simple) proofs to the reader.

1. ∗R has a non-archimedean order.
2. There are numbers a such that for all positive standard r,0 < |a| < r . We call

such numbers, including 0, infinitesimals.
3. a is infinitesimal⇔ a−1 is infinite, where a �= 0.
4. For each non-standard finite number a there is a unique standard number st(a)

such that a − st(a) is infinitesimal.
Infinitesimals can be used for elementary calculus in the Leibnizian tradition.

We will give a few examples. Consider an expansion R′ of R with a predicate
for N and a function v. Let ∗R′ be the corresponding non-standard model such
that R′ ≺ ∗R′. We are actually considering two extensions at the same time. N is
contained in R′, i.e. singled out by a special predicate N . Hence N is extended,
along with R′ to ∗N . As expected, ∗N is an elementary extension of N (cf.
Exercise 14). Therefore we may safely operate in the traditional manner with real
numbers and natural numbers. In particular we also have in ∗R′ infinite natural
numbers available. We want v to be a sequence, i.e. we are only interested in the
values of v for natural number arguments. The concepts of convergence, limit,
etc. can be taken from analysis.

We will use the notation of the calculus. The reader may try to give the correct
formulation.

Here is an example: ∃m∀n > m(|vn − vm| < ε) stands for ∃x(N(x) ∧
∀y(N(y) ∧ y > x → |v(y) − v(x)| < ε)). Properly speaking we should rela-
tivize quantifiers over natural numbers (cf. 3.5.12), but it is more convenient to
use variables of several sorts.

5. The sequence v (or (vn)) converges in R′ iff for all infinite natural numbers
n,m |vn − vm| is infinitesimal.
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Proof (vn) converges in R′ if R′ |= ∀ε > 0∃n∀m > n(|vn − vm| < ε). Assume
that (vn) converges. Choose for ε > 0 an n(ε) ∈ |R′| such that R′ |= ∀m >

n(|vn − vm| < ε). Then also ∗R′ |= ∀m > n(|vn − vm| < ε). In particular, if
m,m′ are infinite, then m,m′ > n(ε) for all ε. Hence |vm − vm′ |< 2ε for all ε.
This means that |vm − vm′ | is infinitesimal. Conversely, if |vn − vm| is infinites-
imal for all infinite n,m, then ∗R |= ∀m > n(|vn − vm|< ε) where n is infinite
and ε standard, positive. So ∗R′ |= ∃n∀m > n(|vn − vm| < ε), for each stan-
dard ε > 0. Now, since R′ ≺ ∗R′,R′ |= ∃n∀m > n(|vn − vm|< ε) for ε > 0, so
R′ |= ∀ε > 0∃n∀m > n(|vn − vm|< ε). Hence (vn) converges. �

6. limn→∞ vn = a⇔ |a − vn| is infinitesimal for infinite n.

Proof Similar to 5. �

We have only been able to touch the surface “non-standard analysis”. For an
extensive treatment, see e.g. Robinson (1965), Stroyan and Luxemburg (1976).

We can now strengthen the Skolem–Löwenheim Theorems.

Theorem 4.3.12 (Downward Skolem–Löwenheim) Let the language L of A have
cardinality κ , and suppose A has cardinality λ≥ κ . Then there is a structure B of
cardinality κ such that B≺A.

Proof See Corollary 4.4.11. �

Theorem 4.3.13 (Upward Skolem–Löwenheim) Let the language L of A have
cardinality κ and suppose A has cardinality λ≥ κ . Then for each μ > λ there is a
structure B of cardinality μ, such that A≺B.

Proof Apply the old Upward Skolem–Löwenheim Theorem to Th(Â). �

In the completeness proof we used maximally consistent theories. In model the-
ory these are called complete theories. As a rule the notion is defined with respect
to axiom sets.

Definition 4.3.14 A theory with axioms Γ in the language L, is called complete if
for each sentence σ in L, either Γ � σ , or Γ � ¬σ .

A complete theory leaves, so to speak, no questions open, but it does not prima
facie restrict the class of models. In the old days mathematicians tried to find for
such basic theories as arithmetic axioms that would determine up to isomorphism
one model, i.e. to give a set Γ of axioms such that A,B ∈Mod(Γ )⇒A∼=B. The
Skolem–Löwenheim Theorems have taught us that this is (barring the finite case)
unattainable. There is, however, a significant notion.

Definition 4.3.15 Let κ be a cardinal. A theory is κ-categorical if it has at least one
model of cardinality κ and if any two of its models of cardinality κ are isomorphic.
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Categoricity in some cardinality is not as unusual as one might think. We list
some examples.

1. The theory of infinite sets (identity structures) is κ-categorical for all infinite κ .

Proof Immediate, as here “isomorphic” means “of the same cardinality”. �

2. The theory of densely ordered sets without endpoints is ℵ0-categorical.

Proof See any textbook on set theory. The theorem was proved by Cantor using
what is called the back-and-forth method. �

3. The theory of divisible torsion-free abelian groups is κ-categorical for κ > ℵ0.

Proof Check that a divisible torsion-free abelian group is a vector space over the
rationals. Use the fact that vector spaces of the same dimension (over the same
field) are isomorphic. �

4. The theory of algebraically closed fields (of a fixed characteristic) is κ-
categorical for κ > ℵ0.

Proof Use Steinitz’s theorem: two algebraically closed fields of the same character-
istic and of the same uncountable transcendence degree are isomorphic. �

The connection between categoricity and completeness, for countable languages,
is given by the following.

Theorem 4.3.16 (Vaught’s Theorem) If T has no finite models and is κ-categorical
for some nκ not less than the cardinality of L, then T is complete.

Proof Suppose T is not complete. Then there is a σ such that T �� σ and T �� ¬σ .
By the Model Existence Lemma, there are A and B in Mod(T ) such that A |= σ

and B |= ¬σ . Since A and B are infinite we can apply the Skolem–Löwenheim
Theorem (upwards or downwards), so as to obtain A′ and B′, of cardinality κ , such
that A≡A′, and B≡B′. But then A′ ∼=B′, and hence A′ ≡B′, so A≡B.

This contradicts A |= σ and B |= ¬σ . �

As a consequence we see that the following theories are complete:

1. The theory of infinite sets;
2. The theory of densely ordered sets without endpoints;
3. The theory of divisible torsion-free abelian groups;
4. The theory of algebraically closed fields of fixed characteristic.

A corollary of the last fact was known as Lefschetz’s principle: if a sentence σ ,
in the first-order language of fields, holds for the complex numbers, it holds for all
algebraically closed fields of characteristic zero.



4.3 Some Model Theory 119

This means that an “algebraic” theorem σ concerning algebraically closed fields
of characteristic 0 can be obtained by devising a proof by whatsoever means (ana-
lytical, topological, . . . ) for the special case of the complex numbers.

Decidability We have seen in Chap. 2 that there is an effective method to test
whether a proposition is provable—by means of the truth table technique, since
“truth = provability”.

It would be wonderful to have such a method for predicate logic. Church has
shown, however, that there is no such method (if we identify “effective” with “recur-
sive”) for general predicate logic. But there might be, and indeed there are, special
theories which are decidable. A technical study of decidability belongs to recursion
theory. Here we will present a few informal considerations.

If T , with language L, has a decidable set of axioms Γ , then there is an effective
method for enumerating all theorems of T .

One can obtain such an enumeration as follows:

(a) Make an effective list σ1, σ2, σ3, . . . of all axioms of T (this is possible because
Γ is decidable), and a list ϕ1, ϕ2, . . . of all formulas of L.

(b) (1) write down all derivations of size 1, using σ1, ϕ1, with at most σ1 uncan-
celled,
(2) write down all derivations of size 2, using σ1, σ2, ϕ1ϕ2, with at most σ1, σ2
uncancelled,

...

(n) write down all derivations of size n, using σ1, . . . , σn,ϕ, . . . , ϕn, with at
most σ1, . . . , σn uncancelled,

...

Each time we get only finitely many theorems and each theorem is eventually de-
rived. The process is clearly effective (although not efficient).

We now observe the following.

Lemma 4.3.17 If Γ and Γ c (complement of Γ ) are effectively enumerable, then Γ

is decidable.

Proof Generate the lists of Γ and Γ c simultaneously. In finitely many steps we will
either find σ in the list for Γ or in the list for Γ c . So for each σ we can decide in
finitely many steps whether σ ∈ Γ or not. �

As a corollary we get the next theorem.

Theorem 4.3.18 If T is effectively axiomatizable and complete, then T is decidable.

Proof Since T is complete, we have Γ � σ or Γ � ¬σ for each σ (where Γ axiom-
atizes T ). So σ ∈ T c ⇔ Γ �� σ ⇔ Γ �¬σ .

From the above sketch it follows that T and T c are effectively enumerable. By
the lemma T is decidable. �
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Application The following theories are decidable:

1. The theory of infinite sets;
2. The theory of densely ordered sets without endpoints;
3. The theory of divisible, torsion-free abelian groups;
4. The theory of algebraically closed fields of fixed characteristic.

Proof See the consequences of Vaught’s Theorem (4.3.16). The effective enumerat-
ing is left to the reader (the simplest case is, of course, that of a finitely axiomatizable
theory, e.g. (1), (2). �

We will finally present one more application of the non-standard approach, by
giving a non-standard proof of the following lemma.

Lemma 4.3.19 (König’s Lemma) An infinite, finitary tree has an infinite path.

A finitary tree, or fan, has the property that each node has only finitely many
immediate successors (“zero successors” is included). By contraposition one obtains
from König’s Lemma the fan theorem (which was actually discovered first).

Theorem 4.3.20 If in a fan all paths are finite then the length of the paths is
bounded.

Note that if one considers the tree as a topological space, with its canonical topol-
ogy (basic open set “are” nodes), then König’s Lemma is the Bolzano–Weierstrass
theorem, and the fan theorem states the compactness.

We will now provide a non-standard proof of König’s Lemma.
Let T be a fan, and let T ∗ be a proper elementary extension (use Theo-

rem 4.3.13).

(1) the relation “. . . is an immediate successor of . . . ” can be expressed in the lan-
guage of partial order:

x <i y := x < y ∧ ∀z(x ≤ z ≤ y → x = z ∨ y = z) where, as usual, x < y

stands for x ≤ y ∧ x �= y.
(2) If a is standard, then its immediate successors in T ∗ are also standard. Since T is

finitary, we can indicate a1, . . . , an such that T |= ∀x(x <i a↔∨∨
1≤k≤n ak =

x). By T ≺ T ∗, we also have T ∗ |= ∀x(x <i a↔∨∨
1≤k≤n ak = x), so if b is an

immediate successor of a in T ∗, then b= ak for some k ≤ n, i.e. b is standard.
Note that a node without successors in T has no successors in T ∗ either, for

T |= ∀x(x ≤ a↔ x = a)⇔ T ∗ |= ∀x(x ≤ a↔ x = a).
(3) In T we have that a successor of a node is an immediate successor of that node

or a successor of an immediate successor, i.e.

T |= ∀xy
(
x < y→∃z(x ≤ z <i y)

)
. (∗)

This is the case since for nodes a and b with a < b,b must occur in the finite
chain of all predecessors of a. So let a = an < an−1 < · · · < ai = b < ai−1 <

, . . . , then a ≤ ai+1 <i b.
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Since the desired property is expressed by a first-order sentence (∗), (3) also
holds for T ∗.

(4) Let a∗ be a non-standard element of T ∗. We claim that P = {a ∈ |T ||a∗ < a} is
an infinite path (i.e. a chain).

(i) P is linearly ordered since T |= ∀xyz(x ≤ y ∧ x ≤ z→ y ≤ z ∨ z ≤ y) and
hence for any p,q ∈ P ⊆ |T ∗| we have p ≤ q or q ≤ p.

(ii) Suppose P is finite with last element b, then b has a successor and hence an
immediate successor in T ∗, which is a predecessor of a∗. By (2) this immediate
successor belongs to P . Contradiction. Hence P is infinite.

This shows that T has an infinite path. �

Quantifier Elimination Some theories have the pleasant property that they al-
low the reduction of formulas to a particularly simple form: one in which no
quantifiers occur. Without going into a general theory of quantifier elimination,
we will demonstrate the procedure in a simple case: the theory DO of dense or-
der without endpoints, cf. Definition 3.7.3(ii); “without endpoints” is formulated as
“∀x∃yz(y < x ∧ x < z)”.

Let FV(ϕ) = {y1, . . . , yn}, where all variables actually occur in ϕ. By standard
methods we obtain a prenex normal form ϕ′ of ϕ, such that ϕ′ := Q1x1Q2x2 . . .

Qmxmψ(x1, . . . , xm, y1, . . . , yn), where each Qi is one of the quantifiers ∀,∃. We
will eliminate the quantifiers starting with the innermost one.

Consider the case Qm = ∃. We bring ψ into disjunctive normal form
∨∨

ψj ,
where each ψj is a conjunction of atoms and negations of atoms. First we observe
that the negations of atoms can be eliminated in favor of atoms, since DO � ¬z =
z′ ↔ (z < z′ ∨ z′ < z) and DO � ¬z < z′ ↔ (z = z′ ∨ z′ < z). So we may assume
that the ψj ’s contain only atoms.

By plain predicate logic we can replace ∃xm

∨∨
ψj by the equivalent formula

∨∨ ∃xmψj .
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Notation For the rest of this example we will use σ
∗↔ τ as an abbreviation for

DO � σ ↔ τ .

We have just seen that it suffices to consider only formulas of the form
∃xm

∧∧
σp , where each σp is atomic. A systematic look at the conjuncts will show

us what to do.

(1) If xm does not occur in
∧∧

σp , we can delete the quantifier (cf. Theorem 3.5.2).
(2) Otherwise, collect all atoms containing xm and regroup the atoms, such that we

get
∧∧

σp
∗↔∧∧

i xm < ui ∧∧∧
j vj < xm ∧∧∧

k wk = xm ∧ χ , where χ does
not contain xm. Abbreviate this formula as τ ∧ χ . By predicate logic we have

∃xm(τ ∧ χ)
∗↔ ∃xmτ ∧ χ (cf. Theorem 3.5.3). Since we want to eliminate ∃xm,

it suffices to consider ∃xmτ only.
Now the matter has been reduced to bookkeeping. Bearing in mind that we are
dealing with a linear order, we will exploit the information given by τ concern-
ing the relative position of the ui, vj ,wk’s with respect to xm.
(2a) τ :=∧∧

xm < ui ∧ ∧∧
vj < xm ∧ ∧∧

wk = xm.

Then ∃xmτ
∗↔ τ ′, with τ ′ :=∧∧

w0 < ui ∧ ∧∧
vj < w0∧ ∧∧

w0 =wk

(where w0 is the first variable among the wk’s). The equivalence follows
immediately by a model theoretic argument (i.e. DO |= ∃xmτ ↔ τ ′).

(2b) τ :=∧∧
xm < ui ∧∧∧

vj < xm.
Now the properties of DO are essential. Observe that ∃xm(

∧∧
xm <

ai ∧ ∧∧
bj < xm) holds in a densely ordered set if and only if all the

ai ’s lie to the right of the bj ’s. So we get (by completeness) ∃xmτ
∗↔∧∧

i,j vj < ui .
(2c) τ :=∧∧

xm < ui ∧∧∧
wk = xm.

Then ∃xmτ
∗↔∧∧

w0 < ui ∧∧∧
wk =w0.

(2d) τ :=∧∧
vj < xm ∧∧∧

wk = xm.
Cf. (2c).

(2e) τ :=∧∧
xm < ui .

Observe that ∃xmτ holds in all ordered sets without a left endpoint. So we

have ∃xmτ
∗↔�, since we work in DO.

(2f) τ :=∧∧
vj < xm. Cf. (2e).

(2g) τ :=∧∧
wk = xm.

Then ∃xmτ
∗↔∧∧

w0 =wk .

Remarks

(i) The cases (2b), (2e) and (2f) make essential use of DO.
(ii) It is often possible to introduce shortcuts, e.g. when a variable (other than xm)

occurs in two of the big conjuncts we have ∃xmτ
∗↔⊥.

If the innermost quantifier is universal, we reduce it to an existential one by
∀xmϕ↔¬∃xm¬ϕ.

Now it is clear how to eliminate the quantifiers one by one.
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Example

∃xy(x < y ∧ ∃z(x < z∧ z < y ∧ ∀u(u �= z→ u < y ∨ u= x)))
∗↔ ∃xyz∀u[x < y ∧ x < z∧ z < y ∧ (u= z∨ u < y ∨ u= x)]
∗↔ ∃xyz¬∃u[¬x < y ∨¬x < z∨¬z < y ∨ (¬u= z∧¬u < y ∧¬u= x)]
∗↔ ∃xyz¬∃u[x = y ∨ y < x ∨ x = z∨ z < x ∨ z= y ∨ y < z

∨ ((u < z∨ z < u)∧ (u= y ∨ y < u)∧ (u < x ∨ x < u))]
∗↔ ∃xyz¬∃u[x = y ∨ y < x ∨ x = z∨ z < x ∨ z= y ∨ y < z

∨ (u < z∧ u= y ∧ u < x)∨ (u < z∧ u= y ∧ x < u)

∨ (u < z∧ y < u∧ u < x)∨ (u < z∧ y < u∧ x < u)

∨ (z < u∧ u= y ∧ u < x)∨ (z < u∧ u= y ∧ x < u)

∨ (z < u∧ y < u∧ u < x)∨ (z < u∧ y < u∧ x < u)].
∗↔ ∃xyz¬[x = y ∨ y < x ∨ x = z∨ z < x ∨ z= y ∨ y < z

∨ ∃u(u < z∧ u= y ∧ u < x)∨ ∃u(u < z∧ u= y ∧ x < u)∨ · · ·
∨ ∃u(z < u∧ y < u∧ x < u)].

∗↔ ∃xyz¬[x = y ∨ · · · ∨ y < z∨ (y < z∧ y < x)∨ (y < z∧ x < y)

∨ (y < z∧ y < x)∨ (y < z∧ x < z)∨ (z < y ∧ y < x)

∨ (z < y ∧ x < y)∨ (z < x ∧ y < x)∨�].
∗↔ ∃xyz(¬�).
∗↔⊥ .

Evidently the above quantifier elimination for the theory of dense order without
endpoints provides an alternative proof of its decidability. For, if ϕ is a sentence,
then ϕ is equivalent to an open sentence ϕ′. Given the language of DO it is obvious
that ϕ′ is equivalent to either � or ⊥. Hence, we have an algorithm for deciding
DO � ϕ. Note that we have obtained more: DO is complete, since DO � ϕ↔⊥ or
DO � ϕ↔�, so DO � ¬ϕ or DO � ϕ.

In general we cannot expect that much from quantifier elimination: e.g. the theory
of algebraically closed fields admits quantifier elimination, but it is not complete
(because the characteristic has not been fixed in advance); the open sentences may
contain unprovable and unrefutable atoms such as 7= 12, 23= 0.

We may conclude from the existence of a quantifier elimination a certain model
theoretic property, introduced by Abraham Robinson, which has turned out to be
important for applications in algebra (cf. the Handbook of Mathematical Logic, A4).

Definition 4.3.21 A theory T is model complete if for A,B ∈Mod(T )A ⊆B⇒
A≺B.

We can now immediately obtain the following.

Theorem 4.3.22 If T admits quantifier elimination, then T is model complete.
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Proof Let A and B be models of T , such that A ⊆ B. We must show that
A |= ϕ(a1, . . . , an)⇔B |= ϕ(a1, . . . , an) for all a1, . . . , an ∈ |A|, where FV(ϕ)=
{x1, . . . , xn}.

Since T admits quantifier elimination, there is a quantifier-free ψ(x1, . . . , xn)

such that T � ϕ↔ψ .
Hence it suffices to show A � ψ(a1, . . . , an) ⇔ B � ψ(a1, . . . , an) for a

quantifier-free ψ . A simple induction establishes this equivalence. �

Some theories T have a particular model that is, up to isomorphism, contained
in every model of T . We call such a model a prime model of T .

Examples

(i) The rationals form a prime model for the theory of dense ordering without
endpoints;

(ii) The field of the rationals is the prime model of the theory of fields of charac-
teristic zero;

(iii) The standard model of arithmetic is the prime model of Peano arithmetic.

Theorem 4.3.23 A model complete theory with a prime model is complete.

Proof Left to the reader. �

Exercises

1. Let A= 〈A,≤〉 be a poset. Show that Diag+(A)∪{a �= b | a �= b, a, b ∈ |A|} ∪
{∀xy(x ≤ y ∨ y ≤ x)} has a model. (Hint: use compactness.)

Conclude that every poset can be linearly ordered by an extension of its
ordering.

2. If f :A∼=B and FV(ϕ)= {x1, . . . , xn}, show A |= ϕ[a1, . . . , an/x1, . . . , xn] ⇔
B |= ϕ[f (a1), . . . , f (an)/x1, . . . , xn].

In particular, A≡B.
3. Let A⊆B. ϕ is called universal (existential) if ϕ is prenex with only universal

(existential) quantifiers.
(i) Show that for universal sentences ϕ B |= ϕ⇒A |= ϕ.

(ii) Show that for existential sentences ϕ A |= ϕ⇒B |= ϕ.
(Application: a substructure of a group is a group. This is one reason to use the
similarity type 〈−;2,1;1〉 for groups, instead of 〈−;2;0〉, or 〈−;2;1〉, as some
authors do.)

4. Let A= 〈N,<〉,B= 〈N − {0},<〉.
Show:

(i) A∼=B; (ii) A≡B;
(iii) B⊆A; (iv) not B≺A.

5. (Tarski). Let A ⊆ B. Show A ≺ B ⇔ for all ϕ ∈ L and a1, . . . , an ∈
|A|, B |= ∃yϕ(y, a1, . . . , an) ⇒ there is an element a ∈ |A| such that B |=
ϕ(a, a1, . . . , an), where FV(ϕ(y, a1, . . . , an))= {y}. Hint: for ⇐ show
(i) tA(a1, . . . , an)= tB(a1, . . . , an) for t ∈ L,
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(ii) A |= ϕ(a1, . . . , an)⇔B |= ϕ(a1, . . . , an) for ϕ ∈ L by induction on ϕ (use
only ∨,¬,∃).

6. Another construction of a non-standard model of arithmetic: add to the language
L of arithmetic a new constant c. Show Γ = Th(N̂) ∪ {c > n|n ∈ |N|} has a
model M. Show that M �∼=N. Can M be countable?

7. Consider the ring Z of integers. Show that there is an A such that Z ≺ A and
Z �∼= A (a non-standard model of the integers). Show that A has an “infinite
prime number”, p∞.

Let (p∞) be the principal ideal in A generated by p∞ . Show that A/(p∞)

is a field F . (Hint: look at ∀x(“x not in (p∞)” →∃yz(xy = 1+ zp∞)), give
a proper formulation and use elementary equivalence.) What is the character-
istic of F ? (This yields a non-standard construction of the rationals from the
integers: consider the prime field.)

8. Use the non-standard model of arithmetic to show that “well-ordering” is not a
first-order concept.

9. Use the non-standard model of the reals to show that “archimedean ordered
field” is not a first-order concept.

10. Consider the language of identity with constants ci (i ∈N), Γ = {I1, I2, I3} ∪
{ci �= cj |i, j ∈N, i �= j}. Show that the theory of Γ is k-categorical for k > ℵ0,
but not ℵ0-categorical.

11. Show that the condition “no finite models” in Vaught’s Theorem is necessary
(look at the theory of identity).

12. Let X ⊆ |A|. Define X0 =X ∪C where C is the set of constants of A,Xn+1 =
Xn ∪ {f (a1, . . . , am)|f in A, a1, . . . , am ∈Xn}, Xω =⋃{Xn|n ∈N}.
Show: B= 〈Xω,R1 ∩X

r1
ω , . . . ,Rn ∩X

r1
ω ,f1|Xa1

ω , . . . , fm|Xam
ω , {ci |i ∈ I }〉 is a

substructure of A. We say that B is the substructure generated by X. Show that
B is the smallest substructure of A containing X; B can also be characterized
as the intersection of all substructures containing X.

13. Let ∗R be a non-standard model of Th(R). Show that st (cf. p. 116) is a homo-
morphism from the ring of finite numbers onto R. What is the kernel?

14. Consider R′ = 〈R,N,<,+, ·,−,−1 ,0,1〉, where N is the set of natural num-
bers. L(R′) has a predicate symbol N , and we can, restricting ourselves to
+ and ·, recover arithmetic by relativizing our formulas to N (cf. Defini-
tion 3.5.12).

Let R′ ≺∗ R′ = 〈∗R,∗N, . . . 〉. Show that N = 〈N,<,+, ·,0,1〉 ≺ 〈∗N,<,

+, ·,0,1〉 =∗ N (hint: consider for each ϕ ∈ L(N) the relativized ϕN ∈ L(R′)).
15. Show that any Peano structure contains N as a substructure.
16. Let L be a language without identity and with at least one constant. Let

σ = ∃x1 · · ·xnϕ(x1, . . . , xn) and Σσ = {ϕ(t1, . . . , tn)|ti closed in L}, where ϕ

is quantifier free.
(i) |= σ ⇔ each A is a model of at least one sentence in Σσ . (Hint: for each

A, look at the substructure generated by ∅.)
(ii) Consider Σσ as a set of propositions. Show that for each valuation

v (in the sense of propositional logic) there is a model A such that
[[ϕ(t1, . . . , tn)]]v = [[ϕ(t1, . . . , tn)]]A, for all ϕ(t1, . . . tn) ∈Σσ .
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(iii) Show that � σ ⇔� ∨∨m
i=1 ϕ(ti1, . . . , t

i
n) for a certain m (hint: use Exer-

cise 9, Sect. 2.5).
17. Let A,B ∈Mod(T ) and A≡B. Show that Diag(A)∪Diag(B)∪ T is consis-

tent (use the Compactness Theorem). Conclude that there is a model of T in
which both A and B can be isomorphically embedded.

18. Consider the class K of all structures of type 〈1;−;0〉 with a denumerable
unary relation. Show that any A and B in K of the same cardinality κ > ℵ0 are
isomorphic. Show that T = Th(K) is not κ-categorical for any κ ≥ ℵ0.

19. Consider a theory T of identity with axioms λn for all n ∈ N . In which cardi-
nalities is T categorical? Show that T is complete and decidable. Compare the
result with Exercise 10.

20. Show that the theory of dense order without endpoints is not categorical in the
cardinality of the continuum.

21. Consider the structure A= 〈R,<,f 〉, where < is the natural order, and where
f is a unary function. Let L be the corresponding language. Show that there is
no sentence σ in L such that A |= σ ⇔ f (r) > 0 for all r ∈ R. (Hint: consider
isomorphisms x %→ x + k.)

22. Let A = 〈A,∼〉, where ∼ is an equivalence relation with denumerably many
equivalence classes, all of which are infinite. Show that Th(A) is ℵ0-categorical.
Axiomatize Th(A). Is there a finite axiomatization? Is Th(A) κ-categorical for
κ > ℵ0?

23. Let L be a language with one unary function symbol f . Find a sentence τn,
which says that “f has a loop of length n”, i.e. A |= τn ⇔ there are a1, . . . , an ∈
|A| such that fA(ai)= ai+1(i < n) and fA(an)= a1. Consider a theory T with
axiom set {β,¬τ1,¬τ2,¬τ3, . . . ,¬τn, . . . }(n ∈ ω), where β expresses “f is
bijective”.

Show that T is κ-categorical for κ > ℵ0. (Hint: consider the partition
{(fA)i(a)|i ∈ ω} in a model A.) Is T ℵ0-categorical?

Show that T is complete and decidable. Is T finitely axiomatizable?
24. Put T∀ = {σ |T � σ and σ is universal}. Show that T∀ axiomatizes the theory of

all substructures of models of T . Note that one part follows from Exercise 3.
For the converse: let A be a model of T∀ and consider Diag(A) ∪ T . Use com-
pactness.

25. We say that a theory T is preserved under substructures if A ⊆ B and
B ∈ Mod(T ) implies A ∈ Mod(T ). (Łos–Tarski). Show that T is preserved
under substructures iff T can be axiomatized by universal sentences (use Exer-
cise 24).

26. Let A ≡B, show that there exists a C such that A ≺ C,B≺ C (up to isomor-
phism). Hint: assume that the set of new constants of B̂ is disjoint with the set
of new constants of Â. Show that Th(Â)∪ Th(B̂) has a model.

27. Show that the ordering <, defined by x < y := ∃u(y = x + Su) is provably
transitive in Peano arithmetic, i.e. PA � ∀xyz(x < y ∧ y < z→ x < z).

28. Show:
(i) PA � ∀x(0≤ x) (induction on x),

(ii) PA � ∀x(x = 0∨ ∃y(x = Sy))(induction on x),
(iii) PA � ∀xy(x + y = y + x),
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(iv) PA � ∀y(x < y→ Sx ≤ y) (induction on y),
(v) PA � ∀xy(x < y ∨ x = y ∨ y < x) (induction on x, the case of x = 0 is

simple, for the step from x to Sx use (iv)),
(vi) PA � ∀y¬∃x(y < x ∧ x < Sy) (compare with (iv)).

29. (i) Show that the theory L∞ of identity with “infinite universe” (cf. Sect. 4.1,
Exercise 3 or Exercise 19 above) admits quantifier elimination.

(ii) Show that L∞ has a prime model.

4.4 Skolem Functions or How to Enrich Your Language

In mathematical arguments one often finds passages such as “. . . there is an x such
that ϕ(x) holds. Let a be such an element, then we see that . . . ”. In terms of our
logic, this amounts to the introduction of a constant whenever the existence of some
element satisfying a certain condition has been established. The problem is: does
one thus strengthen the theory in an essential way? In a precise formulation: sup-
pose T � ∃xϕ(x). Introduce a (new) constant a and replace T by T ′ = T ∪ {ϕ(a)}.
Question: is T ′ conservative over T , i.e. does T ′ �ψ ⇒ T �ψ hold, for ψ not con-
taining a? We have dealt with a similar problem in the context of Henkin theories
(Sect. 4.1), so we can use the experience obtained there.

Theorem 4.4.1 Let T be a theory with language L, such that T � ∃xϕ(x), where
FV(ϕ) = {x}, and let c be a constant not occurring in L. Then T ∪ {ϕ(c)} is con-
servative over T .

Proof By Lemma 4.1.7, T ′ = T ∪ {∃xϕ(x)→ ϕ(c)} is conservative over T . If ψ ∈
L and T ′ ∪ {ϕ(c)} � ψ , then T ′ ∪ {∃xϕ(x)} � ψ , or T ′ � ∃xϕ(x)→ ψ . Since T ′ is
conservative over T we have T � ∃xϕ(x)→ ψ . Using T � ∃xϕ(x), we get T � ψ .
(For an alternative proof see Exercise 6.) �

The above is but a special case of a very common piece of practice; if one, in
the process of proving a theorem, establishes that “for each x there is a y such that
ϕ(x, y)”, then it is convenient to introduce an auxiliary function f that picks a y for
each x, such that ϕ(x,f (x)) holds for each x. This technique usually invokes the
axiom of choice. We can put the same question in this case: if T � ∀x∃yϕ(x, y), in-
troduce a function symbol f and replace T by T ′ = T ∪ {∀xϕ(x,f (x))}. Question:
is T ′ conservative over T ? The idea of enriching the language by the introduction
of extra function symbols, which take the role of choice functions, goes back to
Skolem.

Definition 4.4.2 Let ϕ be a formula of the language L with FV(ϕ)= {x1, . . . , xn, y}.
Associate with ϕ an n-ary function symbol fϕ , called the Skolem function (symbol)
of ϕ. The sentence

∀x1 · · ·xn

(∃yϕ(x1, . . . , xn, y)→ ϕ
(
x1, . . . , xn, fϕ(x1, . . . , xn)

))

is called the Skolem axiom for ϕ.
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Note that the witness of Sect. 4.1 is a special case of a Skolem function (take
n= 0): fϕ is a constant.

Definition 4.4.3 If T is a theory with language L, then T sk = T ∪{σ |σ is a Skolem
axiom for some formula of L} is the Skolem extension of T and its language Lsk

extends L by including all Skolem functions for L. If A is of the type of L and Ask

an expansion of A of the type of Lsk, such that Ask |= σ for all Skolem axioms σ of
L and |A| = |Ask|, then Ask is called a Skolem expansion of A.

The interpretation in Ask of a Skolem function symbol is called a Skolem func-
tion.

Note that a Skolem expansion contains infinitely many functions, so it is a mild
extension of our notion of structure. The analogue of Lemma 4.1.7 is the follow-
ing.

Theorem 4.4.4 (i) T sk is conservative over T .
(ii) Each A ∈Mod(T ) has a Skolem expansion Ask ∈Mod(T sk).

Proof We first show (ii). We only consider the case of formulas with FV(ϕ) =
{x1, . . . , xn, y} for n ≥ 1. The case n= 0 is similar, but simpler. It requires the in-
troduction of new constants in A (cf. Exercise 6). Let A ∈Mod(T ) and ϕ ∈ L with
FV(ϕ)= {x1, . . . , xn, y}. We want to find a Skolem function for ϕ in A.

Define Va1,...,an = {b ∈ |A| | A |= ϕ(a1, . . . , an, b)}.
Apply AC to the set {Va1,...,an |Va1,...,an �= ∅}: there is a choice function F such

that F(Va1,...,an) ∈ Va1,...,an . Define a Skolem function by

Fϕ(a1, . . . , an)=
{

F(Va1,...,an) if Va1,...,an �= ∅,
e else, where e ∈ |A|.

Now it is a routine matter to check that indeed Ask |= ∀x1 . . . xn(∃yϕ(x1, . . . , xn,

y)→ ϕ(x1, . . . , xn, fϕ(x1, . . . , xn))), where Fϕ = fAsk

ϕ , and where Ask is the ex-
pansion of A with all Skolem functions Fϕ (including the “Skolem constants”, i.e.
witnesses). (i) Follows immediately from (ii): let T ��ψ (with ψ ∈ L), then there is
an A such that A ��ψ . Since ψ ∈ L, we also have Ask ��ψ (cf. Sect. 4.2, Exercise 3),
hence T sk ��ψ . �

Remark It is not necessary (for Theorem 4.4.4) to extend L with all Skolem func-
tion symbols. We may just add Skolem function symbols for some given set S of
formulas of L. We then speak of the Skolem extension of T with respect to S (or
with respect to ϕ if S = {ϕ}).

The following corollary confirms that we can introduce Skolem functions in the
course of a mathematical argument, without essentially strengthening the theory.
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Corollary 4.4.5 If T � ∀x1, . . . , xn∃yϕ(x1, . . . , xn, y), where FV(ϕ) =
{x1, . . . , xn, y}, then T ′ = T ∪ {∀x1 . . . xnϕ(x1, . . . , xn, fϕ(x1, . . . , xn))} is conser-
vative over T .

Proof Observe that T ′′ = T ∪ {∀x1 . . . xn(∃yϕ(x1, . . . , xn, y) → ϕ(x1, . . . , xn,

f (ϕ(x1, . . . , xn))} � ∀x1 . . . xnϕ(x1, . . . , xn, fϕ(x1, . . . , xn)). So T ′ �ψ ⇒ T ′′ �ψ .
Now apply Theorem 4.4.4. �

The introduction of a Skolem extension of a theory T results in the “elimina-
tion” of the existential quantifier in prefixes of the form ∀x . . . xn∃y. The iteration
of this process on prenex normal forms eventually results in the elimination of all
existential quantifiers.

The Skolem functions in an expanded model are by no means unique. If, however,
A |= ∀x1 . . . xn∃!yϕ(x1, . . . , xn, y), then the Skolem function for ϕ is uniquely de-
termined; we even have Ask |= ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y = fϕ(x1, . . . , xn)).
We say that ϕ defines the function Fϕ in Ask, and ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔
y = fϕ(x1, . . . , xn)) is called the definition of Fϕ in Ask.

We may reasonably expect that with respect to Skolem functions the ∀∃!-
combination yields better results than the ∀∃-combination. The following theorem
tells us that we get substantially more than just a conservative extension result.

Theorem 4.4.6 Let T � ∀x1 . . . xn∃!yϕ(x1, . . . , xn, y), where FV(ϕ) =
{x1, . . . , xn, y} and let f be an n-ary symbol not occurring in T or ϕ. Then
T + = T ∪ {∀x1 . . . xny(ϕ(x1, . . . , xn, y) ↔ y = f (x1, . . . , xn))} is conservative
over T .

Moreover, there is a translation τ → τ 0 from L+ = L∪ {f } to L, such that

(1) T + � τ ↔ τ 0,
(2) T + � τ ⇔ T � τ 0,
(3) τ = τ 0 for τ ∈ L.

Proof

(i) We will show that f acts just like a Skolem function; in fact T + is equivalent
to the theory T ′ of Corollary 4.4.5 (taking f for fϕ).
(a) T + � ∀x1 . . . xnϕ(x1, . . . , xn, f (x1, . . . , xn)).

For, T + � ∀x1 . . . xn∃yϕ(x1, . . . , xn, y) and
T + � ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y = f (x1, . . . , xn)).
Now a simple exercise in natural deduction, involving RI4, yields (a).
Therefore T ′ ⊆ T + (in the notation of Corollary 4.4.5).

(b) y=f (x1, . . . , xn),∀x1 . . . xnϕ(x1 . . . xn, f (x1, . . . , xn)) � ϕ(x1, . . . , xn, y),
so T ′ � y = f (x1, . . . , xn)→ ϕ(x1, . . . , xn, y)

and ϕ(x1, . . . , xn, y),∀x1 . . . xnϕ(x1, . . . , xn, f (x1, . . . , xn)),
∀x1 . . . xn∃ !yϕ(x1, . . . , xn, y) � y = f (x1, . . . , xn),
so T ′ � ϕ(x1, . . . , xn, y)→ y = f (x1, . . . , xn).
Hence T ′ � ∀x1 . . . xny(ϕ(x1, . . . , xn, y)↔ y = f (x1, . . . , xn)).
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So T + ⊆ T ′, and hence T ′ = T +.
Now, by Corollary 4.4.5, T + is conservative over T .

(ii) The idea underlying the translation is to replace occurrences of f (−) by a new
variable and to eliminate f . Let τ ∈ L+ and let f (−) be a term in L+ not con-
taining f in any of its subterms. Then � τ(. . . , f (−), . . . )↔ ∃y(y = f (−) ∧
τ(. . . , y, . . . )), where y does not occur in τ , and T + � τ(. . . , f (−), . . . ) ↔
∃y(ϕ(−, y)∧ τ(. . . , y, . . . )). The right-hand side contains one occurrence of f

less than τ . Iteration of the procedure leads to the required f -free formula τ 0.
The reader can provide the details of a precise inductive definition of τ 0; note
that one need only consider atomic τ (the translation extends trivially to all for-
mulas). Hint: define something like “f -depth” of terms and atoms. From the
above description of τ 0 it immediately follows that T + � τ ↔ τ 0. Now (2)
follows from (i) and (1). Finally (3) is evident. �

As a special case we get the explicit definition of a function.

Corollary 4.4.7 Let FV(t) = {x1, . . . , xn} and f �∈ L. Then T + = T ∪
{∀x1 . . . xn(t = f (x1, . . . , xn)} is conservative over T .

Proof We have ∀x1 . . . xn∃!y(y = t), so the definition of f , as in Theorem 4.4.6, be-
comes ∀x1 . . . xny(y = t ↔ y = f (x1, . . . , xn)), which, by the predicate and identity
rules, is equivalent to ∀x1 . . . xn(t = f (x1, . . . , xn)). �

We call f (x1, . . . , xn) = t the explicit definition of f . One can also add new
predicate symbols to a language in order to replace formulas by atoms.

Theorem 4.4.8 Let FV(ϕ)= {x1, . . . , xn} and let Q be a predicate symbol not in L.
Then

(i) T + = T ∪ {∀x1 . . . xn(ϕ↔Q(x1, . . . , xn))} is conservative over T .
(ii) There is a translation τ → τ 0 into L such that

(1) T + � τ ↔ τ 0,
(2) T + � τ ⇔ T � τ 0,
(3) τ = τ 0 for τ ∈ L.

Proof Similar to, but simpler than, the above. We indicate the steps; the details are
left to the reader.

(a) Let A be of the type of L. Expand A to A+ by adding a relation Q+ =
{〈a1, . . . , an〉|A |= ϕ(a1, . . . , an)}.

(b) Show A |= T ⇔A+ |= T + and conclude (i).
(c) Imitate the translation of Theorem 4.4.6. �

We call the extensions shown in Theorem 4.4.6, Corollary 4.4.7 and Theo-
rem 4.4.8, extensions by definition. The sentences
∀x1 . . . xny(ϕ↔ y = f (x1, . . . , xn)),
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∀x1 . . . xn(f (x1, . . . , xn)= t),
∀x1 . . . xn(ϕ↔Q(x1, . . . , xn)),
are called the defining axioms for f and Q respectively.
Extension by definition belongs to the daily practice of mathematics (and science

in general). If a certain notion, definable in a given language, plays an important role
in our considerations, then it is convenient to have a short, handy notation for it.

Think of “x is a prime number”, “x is equal to y or less than y”, “z is the maxi-
mum of x and y”, etc.

Examples 1. Characteristic functions
Consider a theory T with (at least) two constants c0, c1, such that T � c0 �= c1.

Let FV(ϕ) = {x1, . . . , xn}, then T � ∀x1 . . . xn∃!y((ϕ ∧ y = c1) ∨ (¬ϕ ∧ y = c0)).
(Show this directly or use the Completeness Theorem.)

The defining axiom for the characteristic function Kϕ is ∀x1 . . . xny[(ϕ ∧ y =
c1)∨ (¬ϕ ∧ y = c0))↔ y =Kϕ(x1, . . . , xn)).

2. Definition by (primitive) recursion.
In arithmetic one often introduces functions by recursion, e.g. x!, xy . The study

of these and similar functions belongs to recursion theory; here we only note that we
can conservatively add symbols and axioms for them. Fact (Gödel, Davis, Matijase-
vich): each recursive function is definable in PA, in the sense that there is a formula
ϕ of PA such that

(i) PA � ∀x1 . . . xn∃!yϕ(x1, . . . , xn, y) and
(ii) for k1, . . . , kn,m ∈Nf (k1, . . . , kn)=m⇒ PA � ϕ(k1, . . . , kn,m).

For details see [Smoryński 1991, Davis 1958].

Before ending this chapter, let us briefly return to the topic of Skolem func-
tions and Skolem expansions. As we remarked before, the introduction of Skolem
functions allows us to dispense with certain existential quantifiers in formulas. We
will exploit this idea to rewrite formulas as universal formulas (in an extended lan-
guage!).

First we transform the formula ϕ into prenex normal form ϕ′. Let us suppose
that ϕ′ = ∀x1 . . . xn∃yψ(x1, . . . , xn, y, z1, . . . , zk), where z1, . . . , zk are all the free
variables in ϕ. Now consider

T ∗ = T ∪ {∀x1 . . . xnz1 . . . zk(∃yψ(x1, . . . , xn, y, z1, . . . , zk) → ψ(x1, . . . , xn,

f (x1, . . . , xn, z1, . . . , zk), z1, . . . , zk))}.
By Theorem 4.4.4 T ∗ is conservative over T , and it is a simple exercise in logic

to show that
T ∗ � ∀x1 . . . xn∃yψ(−, y,−)↔∀x1 . . . xnψ(−, f (. . . ),−).
We now repeat the process and eliminate the next existential quantifier in the

prefix of ψ ; in finitely many steps we obtain a formula ϕs in prenex normal form
without existential quantifiers, which, in a suitable conservative extension of T ob-
tained by a series of Skolem expansions, is equivalent to ϕ.

Warning The Skolem form ϕs differs in kind from other normal forms, in the sense
that it is not logically equivalent to ϕ.
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Theorem 4.4.4 shows that the adding of Skolem axioms to a theory is conser-
vative, so we can safely operate with Skolem forms. The Skolem form ϕs has the
property that is satisfiable if and only if ϕ is so (cf. Exercise 4). Therefore it is some-
times called the Skolem form for satisfiability. There is a dual Skolem form ϕs (cf.
Exercise 5), which is valid if and only if ϕ is so. ϕs is called the Skolem form for
validity.

Example ∀x1∃y1∃y2∀x2∃y3∀x3∀x4∃y4 ϕ(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2).
Step 1. Eliminate y1:
∀x1∃y2∀x2∃y3∀x3∀x4∃y4 ϕ(x1, x2, x3, x4, f (x1, z1, z2), y2, y3, y4, z1, z2).

Step 2. Eliminate y2:
∀x1x2∃y3∀x3x4∃y4 ϕ(. . . , f (x1, z1, z2), g(x1, z1, z2), y3, y4, z1, z2).

Step 3. Eliminate y3:
∀x1x2x3x4∃y4 ϕ(. . . , f (x1, z1, z2), g(x1, z1, z2), h(x1, x2, z1, z2), y4, z1, z2).

Step 4. Eliminate y4:
∀x1x2x3x4 ϕ(. . . , f (x1, z1, z2), g(x1, z1, z2), h(x1, x2, z1, z2), k(x1, x2, x3, x4,

z1, z2), z1, z2).

In Skolem expansions we have functions available which pick elements for us.
We can exploit this phenomenon to obtain elementary extensions.

Theorem 4.4.9 Consider A and B of the same type. If Bsk is a Skolem expansion
of B and A∗ ⊆Bsk, where A∗ is some expansion of A, then A≺B.

Proof We use Exercise 5 of Sect. 4.3. Let a1, . . . , an ∈ |A|,B |= ∃yϕ(y, a1, . . . ,

an) ⇔ Bsk |= ϕ(fϕ(a1, . . . , an), a1, . . . , an), where fϕ is the Skolem function

for ϕ. Since A∗ ⊆Bsk, fA∗
ϕ (a1, . . . , an)= fBsk

ϕ (a1, . . . , an) and so b= (fϕ(a1, . . . ,

an))
Bsk = (fϕ(a1, . . . , an))

A∗ ∈ |A|.
Hence Bsk |= ϕ(b, a1, . . . , an). This shows A≺B. �

Definition 4.4.10 Let X ⊆ |A|. The Skolem hull SX of X is the substructure of A
which is the reduct of the structure generated by X in the Skolem expansion Ask of
A (cf. Exercise 12, Sect. 4.3).

In other words SX is the smallest substructure of A, containing X, which is
closed under all Skolem functions (including the constants).

Corollary 4.4.11 For all X ⊆ |A| SX ≺A.

We now immediately get the strengthening of the Downward Skolem–Löwen-
heim Theorem formulated in Theorem 4.3.12, by observing that the cardinality of
a substructure generated by X is the maximum of the cardinalities of X and of
the language. This also holds in the present case, where infinitely many Skolem
functions are added to the language.
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Exercises

1. Consider the example concerning the characteristic function.
(i) Show T + � ∀x1 . . . xn(ϕ↔Kϕ(x1, . . . , xn)= c1).

(ii) Translate Kϕ(x1, . . . , xn)=Kϕ(y1, . . . , yn).
(iii) Show T + � ∀x1 . . . xny1, . . . , yn(Kϕ(x1, . . . , xn) = Kϕ(y1, . . . , yn)) ↔

∀x1 . . . xnϕ(x1, . . . , xn)∨ ∀x1 . . . xn¬ϕ(x1, . . . , xn).
2. Determine the Skolem forms of

(a) ∀y∃x(2x2 + yx − 1= 0),
(b) ∀ε∃δ(ε > 0→ (δ > 0∧ ∀x(|x − a|< δ→ |f (x)− f (a)|< ε)),
(c) ∀x∃y(x = f (y)),
(d) ∀xy(x < y→∃u(u < x)∧ ∃v(y < v)∧ ∃w(x < v ∧w < y)),
(e) ∀x∃y(x = y2 ∨ x =−y2).

3. Let σ s be the Skolem form of σ . Consider only sentences.
(i) Show that Γ ∪ {σ s} is conservative over Γ ∪ {σ }.

(ii) Put Γ s = {σ s |σ ∈ Γ }. Show that for finite Γ,Γ s is conservative over Γ .
(iii) Show that Γ s is conservative over Γ for arbitrary Γ .

4. A formula ϕ with FV(ϕ)= {x1, . . . , xn} is called satisfiable if there is an A and
a1, . . . , an ∈ |A| such that A |= ϕ(a, . . . , an). Show that ϕ is satisfiable iff ϕs is
satisfiable.

5. Let σ be a sentence in prenex normal form. We define the dual Skolem
form σs of σ as follows: let σ = (Q1x1) . . . (Qnxn)τ , where τ is quantifier
free and the Qi are quantifiers. Consider σ ′ = (Q1x1) . . . (Qnxn)¬τ , where
Qi = ∀,∃ iff Qi = ∃,∀. Suppose (σ ′)s = (Qi1xi1) . . . (Qikxik )¬τ ′; then σs =
(Qi1xi1) . . . (Qikxik )τ

′.
In words: eliminate from σ the universal quantifiers and their variables just as

the existential ones in the case of the Skolem form. We end up with an existential
sentence.

Example (∀x∃y∀zϕ(x, y, z))s = ∃yϕ(c, y, f (y)).

We suppose that L has at least one constant symbol.
(a) Show that for all (prenex) sentences σ , |= σ iff |= σs . (Hint: look at Exercise

4.) Hence the name: “Skolem form for validity”.
(b) Prove Herbrand’s theorem:

� σ ⇔�
m∨∨

i=1

σ ′s
(
t i1, . . . , t

i
n

)

for some m, where σ ′s is obtained from σs by deleting the quantifiers. The
t ij (i ≤m,j ≤ n) are certain closed terms in the dual Skolem expansion of L.
Hint: look at ¬(¬σ)s . Use Exercise 16, Sect. 4.3.

6. Let T � ∃xϕ(x), with FV(ϕ) = {x}. Show that any model A of T can be ex-
panded to a model A∗ of T with an extra constant c such that A∗ |= ϕ(c). Use
this for an alternative proof of Theorem 4.4.1.
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7. Consider I∞ the theory of identity “with infinite universe” with axioms
λn(n ∈ N) and I ′∞ with extra constants ci(i ∈ N) and axioms ci �= cj for
i �= j, i, j ∈N . Show that I ′∞ is conservative over I∞.

4.5 Ultraproducts

So far we have exploited the strength of the interaction between logic and its inter-
pretations; the completeness theorem is the key to that part of logic, it provides us
with the compactness theorem, yields non-standard models, characterizes theories,
etc. In the present section we will look at the model theoretic side from a different
point of view.

One might wonder how far one can get without the formal tools of logic; more
specifically, how far will the model theoretic approach get us? In this section we
will introduce a tool for model construction that is very useful for applications in
mathematics, and that allows us to forget for a minute the derivations side of logic.
The notion of ultraproduct was introduced in the 1950s by Łos.

There are many techniques that construct new structures out of old ones. Here
is a simple example: let A and B be groups; then the Cartesian product A ×B

consists of pairs (a, b) with a ∈A,b ∈ B . Multiplication is defined coordinate-wise:
(a1, b1) · (a2, b2)= a1 ·a2, b1 ·b2) and the identity is the pair of identities. The result
is again a group. Note, however, that the Cartesian product of two fields is not a
field.

We will generalize this notion of product so that the properties of the product can
be kept under control. This requires a little bit of set theory.

Definition 4.5.1 Let I be a non-empty set. F ⊆P(I ) is a filter if

(i) A, B ∈F⇒A∩B ∈F
(ii) A ∈F , A⊆ B⇒ B ∈F

(iii) ∅ /∈F (the filter is proper)

We assume F �= ∅. If F is maximal, then F is called an ultrafilter. F is called a free
filter if ∩F = ∅.

Example 4.5.2 The following sets are filters:

1. F = {A |A⊇A0}, for A0 �= ∅. If A0 = {a0}, then clearly F is an ultrafilter; this
filter is called a principal ultrafilter.

2. F = {A | I − A is finite}, for infinite I . The A’s in this filter are called cofinite
sets.

3. F = {A⊆ [0,1] |μ(A)= 1}. Here μ is the Lebesgue measure.

The following provides us with lots of filters.



4.5 Ultraproducts 135

Definition 4.5.3 G⊆P(I ) has the finite intersection property (fip) if

A1, . . . ,An ∈G⇒A1 ∩ · · · ∩An �= ∅.

Lemma 4.5.4 If G has the finite intersection property, then G is contained in a
filter.

Proof Define F = {A |A⊇ B1 ∩ · · · ∩Bk for B1, . . . ,Bk ∈G and k ∈N}.
(i) If A,A′ ∈ F , then A ⊇ B1 ∩ · · · ∩ Bk and A′ ⊇ B ′1 ∩ · · · ∩ B ′l for certain

B1, . . . ,Bk,B
′
1, . . . ,B

′
l ∈G. So A∩A′ ⊇ B1 ∩ · · · ∩Bk ∩B ′1 ∩ · · · ∩B ′l , which

implies A∩A′ ∈F .
(ii) A ∈F ,A⊆A′ ⇒A′ ∈F . Trivial.

(iii) ∅ /∈F . Trivial. �

Exercise 4.5.5 Show that this F is the smallest filter containing G. We say that G

generates F .

Lemma 4.5.6 Let F ⊆P(I ) be a filter. The following are equivalent:

(i) F is an ultrafilter.
(ii) A ∈F or Ac ∈F for all A⊆X.

(iii) A∪B ∈F⇒A ∈F or B ∈F .

Proof (i)⇒ (ii) Assume that A, Ac /∈F . Claim: {A} ∪F has the finite intersection
property. Suppose {A} ∪F does not have the finite intersection property. Consider
A1 ∩ · · · ∩An where Ai ∈F . If (A1 ∩ · · · ∩An)∩A= ∅, then Ac ⊇A1 ∩ · · · ∩An.
But then Ac ∈ F—contradiction. Let G ⊆ P(X) be generated by F ∪ {A}, then
G ⊇F and G �=F ; this contradicts the maximality of F . Hence A ∈F or Ac ∈F .

(ii) ⇒ (iii) Suppose A ∪ B ∈ F . Now suppose A, B /∈ F . Then by (ii),
Ac,Bc ∈ F . Because F is a filter, also Ac ∩ Bc ∈ F , which is equivalent to
(A ∪ B)c ∈ F . But now it follows that (A ∪ B) ∩ (A ∪ B)c = ∅ ∈ F . Contradic-
tion.

(iii)⇒ (i) Assume that F is not maximal. Then F is a proper subset of a filter F ′.
Therefore there is a set A in F ′ which is not in F .

Now A∪Ac = I ∈F , therefore, by (ii), A ∈F or Ac ∈F . In fact Ac ∈F , hence
Ac ∈F ′. We know that A ∈F ′, hence ∅ ∈F ′. Contradiction, so F is an ultrafilter. �

Exercise 4.5.7 If F is a free filter, then F does not contain finite sets.

Corollary 4.5.8

(i) If F is a free ultrafilter, then F contains all cofinite sets.
(ii) If I is finite and F ⊆P(I ) is an ultrafilter, then F is not free (it is principal).

Theorem 4.5.9 (AC) Each filter is contained in an ultrafilter.
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Proof We will use Zorn’s lemma. Suppose we have a filter F ⊆P(X). Let Z be the
set of all filters containing F partially ordered by ⊆. Let K be a chain in Z. Define
F∗ =⋃

K. Claim: F∗ is a filter.

(i) A,B ∈ F∗ ⇒ A ∈ F1,B ∈ F2 for certain F1,F2 ∈ K. Say F1 ⊆ F2, then
A,B ∈F2 ⇒ A∩B ∈F2 ⇒ A∩B ∈F∗.

(ii) Suppose A ∈F∗ and B ⊇A. This means that A ∈F for some F ∈K. Because
F is a filter it follows that B ∈F , which implies that B ∈F∗.

(iii) ∅ /∈F∗. Trivial.

Note that F ∈K⇒F ⊆F∗. We now may apply Zorn’s lemma: there is a maximal
Fm ∈ Z. This is the required ultrafilter. �

Corollary 4.5.10 There is a free ultrafilter on every infinite set I .

Proof The intersection of all cofinite sets of I is empty (why?). So take the F gen-
erated by the cofinite sets and extend it to an ultrafilter. �

Exercise 4.5.11

(1) Let F be a free ultrafilter. Show that A ∈F and B is finite⇒ A−B ∈F .
(2) Show that if G⊆P(N) and G is countable⇒ G does not generate a free ultra-

filter.
(3) Let F be a filter (an ultrafilter) on I and A ∈ F , then F ∩ P(A) is a filter (an

ultrafilter) on A.
(4) The set of all filters is closed under arbitrary intersection and unions of chains.

Our next step is the general definition of Cartesian products of structures with
the same similarity type. Consider an indexed set {Ai |i ∈ I }; for the universe of the
Cartesian product of the set we simply take the Cartesian product of the universes
and we define the relations and operations coordinate-wise. The language L is fixed.

Definition 4.5.12 (Cartesian Product of Structures)

1.
∏

i∈I Ai = {f : I → ⋃
i∈I Ai | f (i) ∈ Ai}. For convenience, we put

∏
i∈I Ai =A.

2. RA(f1, . . . , fn)⇔∀i ∈ I (RAi (f1(i), . . . , fn(i))).
3. FA(f1, . . . , fn)= λi.FAi (f1(i), . . . , fn(i)).
4. cA = λi.cAi .
5.

∏
i∈I Ai = 〈A,RA

1 , . . . ,RA
n ,FA

1 , . . . ,FA
n , {cA

j | j ∈ J }〉.
We will denote this product structure by A when no confusion arises.

Example 4.5.13
∏

i∈NAi where Ai = 〈N,+, ·, {0,1}〉 Since this is the denumerable
product of the natural numbers, we are considering all functions from N to N. One
can visualize those in the lattice in the first quadrant of the plane.
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From now on we will practice a harmless bit of abuse of language by using A both
for the structure and for its universe; the reader will have no difficulty discerning the
two meanings.

Lemma 4.5.14 Let F be a filter on I ; put f1 ∼ f2 ⇔ {i ∈ I | f1(i) = f2(i)} ∈ F ,
where f1, f2 ∈A. Then ∼ is an equivalence relation on A.

Proof

(i) f1 ∼ f1. Note that {i ∈ I | f1(i)= f1(i)} = I ∈F .
(ii) f1 ∼ f2 ⇒ f2 ∼ f1, by definition.

(iii) Transitivity. Assume f1 ∼ f2 and f2 ∼ f3.

Put A1 = {i ∈ I | f1(i)= f2(i)} and A2 = {i ∈ I | f2(i)= f3(i)}, then A1,A2 ∈
(F), and hence A1 ∩A2 ∈F . Now A1 ∩A2 ⊆ {i|f1(i)= f3(i)}. So {i ∈ I | f1(i)=
f3(i)} ∈F , and hence f1 ∼ f3. �

Notation The proper notation for the equivalence relation with respect to F would
be ∼F . When no confusion arises, we will stick to ∼. The equivalence class of f

under ∼F will be denoted by f/F .

The equivalence classes of the elements of the Cartesian product A will serve as
the elements of a new structure. For this purpose we have to define the relations and
operations.

Lemma 4.5.15

1. If f1 ∼ g1, . . . , fn ∼ gn then {i ∈ I | RAi (f1(i), . . . , fn(i))} ∈ F ⇔ {i ∈
I |RAi (g1(i), . . . , gn(i))} ∈F

2. If f1 ∼ g1, . . . , fn ∼ gn, then FA(f1(i), . . . , fn(i))∼ FA(g1(i), . . . , gn(i))

Proof (a) ⇒: Put A1 = {i ∈ I |f1(i) = g1(i)}, . . . ,An = {i ∈ I |fn(i) = gn(i)}. Let
A1, . . . ,An ∈ F and B = {i ∈ I | RAi (f1(i), . . . , fn(i))} ∈ F be given. If i ∈ A1 ∩
· · · ∩ An ∩ B , then f1(i) = g1(i), . . . , fn(i) = gn(i) and RAi (f1(i), . . . , fn(i)) so
RAi (g1(i), . . . , gn(i)). So A1 ∩ · · · ∩An ∩B ⊆ {i ∈ I |RAi (g1(i), . . . , gn(i))}. And
since A1 ∩ · · · ∩An ∩B ∈F , it follows that {i ∈ I |RAi (g1(i), . . . , gn(i))} ∈F .
⇐: Similar.

(b) Let A1 ∩ · · · ∩An ∈ F , as in (a). Consider the set C = {i ∈ I | FAi (f1(i), . . . ,

fn(i))=FAi (g1(i), . . . , gn(i))}. Suppose i ∈A1∩· · ·∩An, then f1(i)= g1(i), . . . ,

fn(i) = gn(i) and therefore FAi (f1(i), . . . , fn(i)) = FAi (g1(i), . . . , gn(i))}. This
tells us that A1∩· · ·∩An ⊆ C, and since A1∩· · ·∩An ∈F , it follows that C ∈F . �

Now we can define a product structure modulo a filter.

Definition 4.5.16 Let F be a filter on I , then

A/F =
∏

i∈I

Ai/F =
〈∏

i∈I

Ai/F , R̃1, . . . , R̃n, F̃1, . . . , F̃m, {c̃j | j ∈ J }
〉
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where
∏

i∈I Ai/F = {f/F | f ∈∏
i∈I Ai}

R̃k(f1/F , . . . , fn/F)= {i ∈ I |RAi

k (f1(i), . . . , fn(i))} ∈F
F̃k(f1/F , . . . , fn/F)= FA

k (f1, . . . , fn)/F
c̃j = cAj /F .

Observe that R̃k and F̃k are well defined by Lemma 4.5.15.

Notation
∏

F Ai :=∏
i∈I Ai/F .∏

F Ai is called the reduced product of the Ai ’s.
∏

F Ai is an ultraproduct if F
is an ultrafilter.

Our next task is to interpret terms of the language in the reduced product.

Lemma 4.5.17 [[t (f1/F , . . . , fn/F)]]∏
F Ai

= λi.[[t (f1(i), . . . , fn(i))]]∏
F Ai

/F .

Proof Induction on t .

• t = c:
[[c]]∏

F Ai
= λi.c(i)/F = λi.[[c]]Ai

/F .

• t = f :
[[f ]]∏

F Ai
= f/F = λi.f (i)/F = λi.[[f ]]Ai

/F .
• t =G(t1, . . . , tk):
[[t (f1/F , . . . , fn/F)]]∏

F Ai

= [[G(t1(f1/F , . . . , fn/F), . . . , tk(f1/F , . . . , fn/F))]]∏
F Ai

= G̃([[t1(f1/F , . . . , fn/F)]]∏
F Ai

, . . . , [[tk(f1/F , . . . , fn/F)]]∏
F Ai

)
IH= G̃(λi.[[t1(f1(i), . . . , fn(i))]]Ai

/F , . . . , λi.[[tk(f1(i), . . . , fn(i))]]Ai
/F)

def= λi.GAi ([[t1(f1(i), . . . , fn(i))]]Ai , . . . , [[tk(f1(i), . . . , fn(i))]]Ai
)/F

= λi.[[G(t1(f1(i), . . . , fn(i)), . . . , tk(f1(i), . . . , fn(i)))]]Ai
/F

= λi.[[t (t1(f1(i), . . . , fn(i)), . . . , tk(f1(i), . . . , fn(i)))]]Ai
/F . �

Lemma 4.5.18
∏

F

Ai |= t = s ⇔ {
i ∈ I | [[t]]Ai

= [[s]]Ai

} ∈F .

Proof
∏

F Ai |= t = s ⇔ [[t]]∏
F Ai

= [[s]]∏
F Ai

⇔ λi.[[t]]Ai
/F = λi.[[s]]Ai

/F ⇔
{i ∈ I | [[t]]Ai

= [[s]]Ai
} ∈F . �

Theorem 4.5.19 (Fundamental Theorem of Ultraproducts, Łos) Let F be an ultra-
filter, then

∏

F

Ai |= ϕ(f1/F , . . . , fn/F) ⇔ {
i ∈ I |Ai |= ϕ

(
f1(i), . . . , fn(i)

)} ∈F .

Proof Induction on ϕ.
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1. Observe that in general ϕ has parameters in
∏

F Ai . ϕ is a sentence in the ex-
tended language L(

∏
F Ai ).

2. Note that we can restrict ourselves to formulas without terms, i.e. the following
is proved for closed ϕ(t1, . . . , tn), see Corollary 3.5.9:

B |= ϕ(t1, . . . , tn) ⇔ B |= ϕ
([[t1]]B, . . . , [[tn]]B

)

• ϕ = (t = s). See Lemma 4.5.18.
• ϕ =R(g1/F , . . . , gm/F).

∏
F Ai |=R(g1/F , . . . , gm/F)⇔

{i ∈ I |RAi (g1(i), . . . , gm(i))} ∈F⇔{i ∈ I |Ai |=R(g1(i), . . . , gm(i))} ∈F .

• ϕ = ϕ1 ∧ ϕ2.
∏

F Ai |= ϕ1 ∧ ϕ2
def⇐⇒∏

F Ai |= ϕ1 and
∏

F Ai |= ϕ2
IH⇐⇒

{i ∈ I |Ai |= ϕ1} ∈F and {i ∈ I |Ai |= ϕ2} ∈F .
Put X1 = {i ∈ I | Ai |= ϕ1} and X2 = {i ∈ I |Ai |= ϕ2}.
Now X1 ∩X2 ∈F and also X1 ∩X2 ⊆ {i ∈ I |Ai |= ϕ1 ∧ ϕ2} ∈F , hence
{i ∈ I |Ai |= ϕ1 ∧ ϕ2} ∈F . The converse is obvious.

• ϕ =¬ψ.
∏

F Ai |= ¬ψ(f1/F , . . . , fn/F)⇔
∏

F Ai �|=ψ(f1/F , . . . , fn/F)
IH⇐⇒{i ∈ I |Ai |=ψ(f1(i), . . . , fn(i))} �∈F .

Since F is an ultrafilter this last statement is equivalent to
{i ∈ I |Ai �|=ψ(f1(i), . . . , fn(i))} ∈F and hence to
{i ∈ I |Ai |= ¬ψ(f1(i), . . . , fn(i))} ∈F .

• ϕ = ∀xψ(x).
∏

F Ai |= ∀xψ(x,f1/F , . . . , fn/F)⇔
∏

F Ai |=ψ(g/F , f1/F , . . . , fn/F) for all g ∈∏
F Ai

IH⇐⇒
{i ∈ I |Ai |=ψ(g(i), f1(i), . . . , fn(i))} ∈F for all g ∈∏

i∈I Ai .
Note that for any a ∈ Ai we can find a g ∈∏

i∈I Ai such that g(i) = a: take an
arbitrary g′ and define

g(i)=
{

g′(i) if i �= j

a if = j.

So we get for all a ∈ |Ai |:
X = {i ∈ I |Ai |=ψ(a,f1(i), . . . , fn(i))} ∈F . (1)

Assume now that {i ∈ I |Ai |= ∀xψ(x,f1(i), . . . , fn(i))} �∈F . Then
{i ∈ I |Ai �|= ∀xψ(x,f1(i), . . . , fn(i))} ∈F , and hence

Y = {i ∈ I |Ai |= ∃x¬ψ(x,f1(i), . . . , fn(i))} ∈F . (2)

Since X ∩ Y ∈ F , we have X ∩ Y �= ∅. So pick an i ∈ X ∩ Y , then by (2) Ai |=
ψ(b,f1(i), . . . , fn(i)) for all b ∈Ai , and by (1) Ai |= ∃x¬ψ(x,f1(i), . . . , fn(i)),
that is, there is a b ∈Ai such that Ai |= ¬ψ(b,f1(i), . . . , fn(i)). Contradiction.
Hence {i ∈ I |Ai |= ∀xψ(x,f1(i), . . . , fn(i))} ∈F .
The converse is left to the reader. �

Definition 4.5.20 AI
F =

∏
F Ai where Ai = A for all i. This is called the ultra-

power of A.

Corollary 4.5.21 A≺AI
F .
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Proof Consider the embedding λi.a/F . This gives you all the constant functions
modulo F . Now AI

F |= ϕ(â1/F , . . . , âk/F)⇔{i ∈ I |A |= ϕ(a1, . . . , ak)} = I ∈F ,
where âj = λi · aj are constant functions with values aj . We say that A is elemen-
tarily embedded in ≺AI

F , and the function λi.a/F is an elementary embedding. �

We continue Example 4.5.13. To avoid notational confusion, we denote the in-
dex set, i.e. N, by I . The (horizontal) rows are the standard numbers, embedded in
the product (modulo F ). Consider d(i)= i (the diagonal). Claim: d > n̂/F for all
standard n. AI

F |= d > n̂(i)/F ⇔ {i ∈ N | d(i) > n̂(i)} ∈ F{i ∈ I | d(i) > n̂(i)} =
{i ∈ I | i > n} is cofinite, so it is in F .

Let us define an infinite prime number: f (i)= pi (the ith prime). We show that
f/F is a prime:

N
I
F |= ∀xy(xy = f/F→ x = 1∨ y = 1) ⇔
{i ∈ | N |= ∀xy(xy = pi → x = 1∨ y = 1)} ∈F ⇔
{i ∈ I |N |= ∀xy(xy = f (i)→ x = 1∨ y = 1)} ∈F

Since pi is a prime number, this set is I (i.e. N), which, being cofinite, belongs to F .
This shows that f/F is a prime in N

I
F .

Theorem 4.5.22 (Ultrafilter Compactness Theorem) Let K=Mod(Γ ). If for every
finite Δ⊆ Γ there is an AΔ ∈K with AΔ |=Δ, then there is an ultraproduct B of
AΔ’s such that B |= Γ .

Proof We may assume that Γ is infinite. Let AΔ |=Δ, and let I be the set of finite
subsets of Γ .

Define for a ϕ ∈ Γ : Sϕ = {Δ ∈ I | ϕ ∈Δ}. The family of Sϕ’s has the finite inter-
section property: {ϕ1, . . . , ϕk} ⊂ Sϕ1∩· · ·∩Sϕk

. By Lemma 4.5.4 and Theorem 4.5.9
there is an ultrafilter F containing the Sϕ’s.

If Δ ∈ Sϕ then ϕ ∈Δ so AΔ |= ϕ, and therefore Sϕ ⊆ {Δ |AΔ |= ϕ}.
So {Δ |AΔ |= ϕ} ∈F .

Now apply the fundamental theorem: {Δ |AΔ |= ϕ} ∈F⇔∏
F AΔ |= ϕ. Hence∏

F AΔ |= Γ . �

This yields a purely model theoretic proof of the Compactness Theorem.

Corollary 4.5.23 (The Compactness Theorem) If Mod(Δ) �= ∅ for all finite Δ⊆ Γ

then Mod(Γ ) �= ∅.

This proof doesn’t use any logic at all. That is indeed most satisfying, as with the
Compactness Theorem one gets enough logic back. One can get, so to speak, the ad-
vantages of the Compactness Theorem, with all its virtues, by completely algebraic
means.

The following is a mild variation of the ultrafilter compactness theorem.

Theorem 4.5.24 Every A is embedded in an ultraproduct of its finitely generated
substructures.
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Proof For a given structure A we consider Γ =Diag(A), with the language contain-
ing constants for all elements of A. Let Δ be a finite subset of Γ ; the new constants
of Δ are a1, . . . , an. The substructure AΔ of A is generated by a1, . . . , an. As Δ is
a subset of the diagram, AΔ |=Δ.

Let F be an ultrafilter containing the finite subsets Δ of Γ , then {Δ| AΔ |=Δ} ∈
F , and hence ΠFAΔ |= Γ , so A ↪→ΠFAΔ. �

Exercise 4.5.25 If F = {X ⊆ I | i0 ∈ X} (i.e. F is a principal ultrafilter) then∏
F Ai

∼=Ai0 .

Definition 4.5.26

(i) K is a basic elementary class if K =Mod(ϕ), for some sentence ϕ (i.e. K is
finitely axiomatizable).

(ii) K is an elementary class if K =Mod(Γ ), for some set of sentences Γ (i.e. K
is axiomatizable).

(iii) K is closed under elementary equivalence if A ∈K,A≡B⇒B ∈K.
(vi) K is closed under ultraproducts if Ai ∈K, F is an ultrafilter⇒∏

F Ai ∈K.

Axiomatizability and finite axiomatizability are by nature syntactic notions; as it
turns out, they also have strictly model theoretic characterizations.

Theorem 4.5.27

(i) K is an elementary class ⇔ K is closed under elementary equivalence and
ultraproducts.

(ii) K is a basic elementary class⇔ K and Kc are closed under elementary equiv-
alence and ultraproducts.

Proof (i) (⇒) K=Mod(Γ ) for some Γ .
K is closed under elementary equivalence. Choose an arbitrary A ∈K. Let B≡A.
This means A |= ϕ⇔B |= ϕ, for all sentences ϕ. Because A |= ϕ for all ϕ ∈ Γ , it
now follows that B |= ϕ for all ϕ ∈ Γ , so B ∈Mod(Γ )=K.
K is closed under ultraproducts. Let Ai ∈ K for i ∈ I and let F be an ultrafilter.
Define A=∏

F Ai . We know A |= ϕ ⇔ {i ∈ I | Ai |= ϕ} ∈ F . If ϕ ∈ Γ , then {i ∈
I |Ai |= ϕ} = I ∈F . So A |= ϕ for all ϕ ∈ Γ , which means that A ∈Mod(Γ )=K.

(⇐): We have to find an axiom set for K, i.e. a set Γ such that Γ |= ϕ ⇔ ϕ ∈
K Clearly, Th(K) is a plausible candidate, so let us try Γ = Th(K). Since K ⊆
Mod(Th(K)), we only have to show “⊇”.. So let A ∈Mod(Γ ). Consider Th(Â) (i.e.
the theory of A in the extended language L(A)).

Claim: Any finite Δ⊆ Th(Â) has a model in K.
Pick such a Δ= {ϕ1 . . . ϕn} and put σ = ϕ1 ∧ · · · ∧ ϕn. Let a1, . . . , ak be the new

constants occurring in σ ; we define σ ∗ = σ [z1, . . . , zk/a1, . . . , ak], where z1, . . . , zk

are fresh variables. Now suppose that ∃(zσ ∗ holds in no B in K; then ¬∃(zσ ∗ ∈ Γ ,
hence A |= ¬∃(zσ ∗, i.e. A |= ∀¬(zσ ∗, which contradicts Â |= Γ . Therefore there is
for each Δ an AΔ ∈ K with AΔ |=Δ. By Theorem 4.5.24,

∏
F AΔ ∈Mod(Th(A))
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for a suitable utrafilter F . Therefore A
≺

↪→ ∏
F AΔ (by Lemma 4.3.9), and thus

A≡∏
F AΔ. K is closed under ultrafilters and ≡, hence A ∈K.

(ii) By (i) and Lemma 4.2.10. �

Application 4.5.28

(i) The class of well-ordered sets is not elementary. N is well-ordered, but A =
N
N

F (for some free ultrafilter F ) has infinite descending sequences. Provide an
example.

(ii) The class of all trees is not elementary. Fact: N is a tree. Consider the structure
A under (i). There is an infinite element d . The top cannot be reached in a finite
number of immediate predecessor steps from d .

(iii) The class of all fields of positive characteristic is not elementary. Consider
Fpi

= Z/(pi) (i.e. the prime field of characteristic pi ). Take a free ultrafilter F
on N. ΠFFpi

=A is a field.
Since {i |Fpj

|= pi �= 0} = {i}c is cofinite, we have A |= pi �= 0. Hence ΠFFpi

has characteristic 0.
(vi) The class of archimedean ordered fields is not elementary. Consider A=Q

N

F ,
where F is a free ultrafilter over N. A has infinite elements, for example d =
λi.i/F . A |= d > r for all r ∈Q. So there is no standard n such that n > d . In
other words the series 1+ 1,1+ 1+ 1,1+ 1+ 1+ 1, . . . will remain below d .

Example 4.5.29 Let A= Z
N

F , where F is a free ultrafilter over N.
A has infinite numbers (non-standard numbers) including infinite primes: put
f (i)= pi . Now A |= “f/F is a prime”, that is A |= ∀xy(xy = f/F→ x = 1∨ y =
1). This infinite prime—let us call it p∞—generates an ideal I . We claim that I is a
maximal ideal. Fortunately there is a way to formulate this in first-order logic. Re-
call that the maximality of the prime ideal (p) for an ordinary prime is expressed by
“for all n there is an m such that mn≡ 1 mod p”. This is formalized by the formula
σ : ∀x∃yz(xy = 1+ zp). As σ holds for all standard primes, it also holds for p∞
by the fundamental theorem. Therefore A/(p∞) is a field. Since it cannot have a
positive characteristic, it has characteristic 0. A field of characteristic 0 contains as
its prime field the rationals, so we can recover the rationals from A/(p∞). Hence
we have in a roundabout way constructed the rationals directly from the finite prime
fields (and hence from N) by model theoretic means.

Corollary 4.5.30 (a) A group G can be ordered ⇔ all of its finitely generated sub-
groups can be ordered.

(b) Every torsion-free abelian group can be ordered.

Proof

(a) Extend the language of group theory with <. The theory of abelian groups has
the axiom set Γ1, Γ2 consists of the ordering axioms + ∀xyz(x < y→ x + z <

y + z). Apply Lemma 4.5.24 to the extended language/similarity type.
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(b) Let GΔ be generated by {a1, . . . , an}. By the fundamental theorem of abelian
groups GΔ

∼= Z
n for some n. Zn can be ordered lexicographically and thus so

can GΔ. Now apply (a). �

Theorem 4.5.31 If A≡B then there exists a C such that A≺ C and B≺ C.

We will not prove this theorem here.

Theorem 4.5.32 If A≡B then A
≺→BI

F , for some I , and some ultrafilter F .

Proof (⇐): Trivial.
(⇒): Let Δ’s be a finite subset of Th(Â) (in L(A)). Say Δ= {ϕ1, . . . , ϕn}, where

ϕ1, . . . , ϕn contain new constants a1, . . . , ak . Define ϕΔ = ϕ1 ∧ · · · ∧ ϕn and ϕ̂Δ =
ϕΔ[z1, . . . , zk/a1, . . . , ak], where z1, . . . , zk are fresh variables. A |= ∃z1, . . . , zkϕΔ

and A≡B, hence B |= ∃z1, . . . , zkϕ̂Δ. Now by Lemma 4.3.9 B̂ |= ϕ̂Δ(b1, . . . , bk)

for certain b1, . . . , bk ∈ |B|; note that we had to expand B in order to accommodate

the new constants. By Theorem 4.5.22 B̂I
F |= Th(Â). So by Lemma 4.3.9 A

≺→
∏

F BΔ in L(A). By taking reducts we get the desired result: BΔ: A
≺→BI

F in L. �

Exercise 4.5.33 (1) ∀i ∈ I (Ai ↪→Bi )⇒ΠFAi ↪→ΠFBi .

(2) ∀i ∈ I (Ai
≺

↪→Bi )⇒ΠFAi
≺

↪→ΠFBi .

Theorem 4.5.34 Let K be an elementary class. A can be embedded into an element
of K ⇔ all finitely generated substructures of A can be embedded into elements
of K.

Proof (⇒): trivial.
(⇐): For each finitely generated Ai of A there is a Bi ∈K so that Ai ↪→Bi ∈K.

So by Theorem 4.5.24 A ↪→ΠFAi ↪→ΠFBi ∈K. �

Application 4.5.35 Recall that a Boolean algebra is atomic iff

∀x(x > 0→∃y(0 < y ≤ x ∧ ∀z(0 < z≤ y→ z= y))).

Facts: (1) An atomic Boolean algebra is isomorphic to a subset of the powerset of
the atoms.

(2) A finitely generated Boolean algebra is atomic (see P.R. Halmos, Lectures on
Boolean Algebras).

By Theorem 4.5.24 any Boolean algebra A is embedded into an ultraproduct of
its finitely generated subalgebras (which are atomic). The atomic Boolean algebra’s
are elementary, so A is embedded in an atomic Boolean algebra. Hence each A is
isomorphic to a sub-Boolean algebra of a P(X) (Stone representation theorem).

Application 4.5.36 (Algebraic closures) Given a field A we will exhibit a field B

extending A, in which all polynomials p(x) of positive degree have zeros.
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Fact: For each finite set of non-constant polynomials p1(x), . . . , pk(x) ∈A[x] there
is an extension A′ of A such that A′ |= ∃xp1(x) = 0 ∧ · · · ∃xpk(x) = 0. Define
Γ = {∃xp(x) = 0 | p(x) a polynomial of positive degree over A} ∪ Diag(A), I =
{Δ⊆ Γ |Δ finite }, Sp = {Δ |∃xp(x)= 0 ∈Δ}. The Sp’s have the finite intersection
property: {∃xp1(x)= 0, . . . ,∃xpk(x)= 0} ∈ Sp1∩· · ·∩Spk

(so A0 |=Diag(A)). For
each Δ there is an AΔ such that AΔ |=Δ. Let F be an ultrafilter on I extending the
Sp’s. ΠFAΔ |= ∃xp(x) = 0 ⇔ {Δ | AΔ |= ∃xp(x) = 0} ∈ F . ΠFAΔ |= Diag(A)

implies A ↪→ΠFAΔ. We have found one particular extension in which all the poly-
nomials have zeros. Then we consider the smallest extension of A inside ΠFAΔ;
this, on algebraic grounds, is the algebraic closure.

For more on ultraproducts, see: P.C. Eklof, Ultraproducts for Algebraists in
Handbook of Mathematical Logic, Elsevier, Amsterdam, 1977; H. Schoutens, The
Use of Ultraproducts in Commutative Algebra, Springer, 2010; J.L. Bell and A.B.
Slomson, Models and Ultraproducts: An Introduction (Dover Books on Mathemat-
ics), 2006; C.C. Chang and H.J. Keisler, Model Theory. Elsevier, Amsterdam 1990
(3rd ed.).



Chapter 5
Second-Order Logic

In first-order predicate logic the variables range over elements of a structure, in
particular the quantifiers are interpreted in the familiar way as “for all elements a

of |A| . . .” and “there exists an element a of |A| . . .”. We will now allow a second
kind of variable ranging over subsets of the universe and its Cartesian products, i.e.
relations over the universe.

The introduction of these second-order variables is not the result of an unbridled
pursuit of generality; one is often forced to take all subsets of a structure into con-
sideration. Examples are “each bounded non-empty set of reals has a supremum”,
“each non-empty set of natural numbers has a smallest element”, “each ideal is con-
tained in a maximal ideal”. Already the introduction of the reals on the basis of the
rationals requires quantification over sets of rationals, as we know from the theory
of Dedekind cuts.

Instead of allowing variables for (and quantification over) sets, one can also allow
variables for functions. However, since we can reduce functions to sets (or relations),
we will restrict ourselves here to second-order logic with set variables.

When dealing with second-order arithmetic we can restrict our attention to vari-
ables ranging over subsets of N , since there is a coding of finite sequences of num-
bers to numbers, e.g. via Gödel’s β-function, or via prime factorization. In general
we will, however, allow for variables for relations.

The introduction of the syntax of second-order logic is so similar to that of first-
order logic that we will leave most of the details to the reader.

The alphabet consists of symbols for

(i) individual variables: x0, x1, x2, . . . ,
(ii) individual constants: c0, c1, c2, . . . ,

and for each n≥ 0,

(iii) n-ary set (predicate) variables: Xn
0 ,Xn

1 ,Xn
2 , . . . ,

(iv) n-ary set (predicate) constants: ⊥,P n
0 ,P n

1 ,P n
2 , . . . ,

(v) connectives : ∧,→,∨,¬,↔,∃,∀.
Finally we have the usual auxiliary symbols: ( , ) , , .

D. van Dalen, Logic and Structure, Universitext, DOI 10.1007/978-1-4471-4558-5_5,
© Springer-Verlag London 2013

145

http://dx.doi.org/10.1007/978-1-4471-4558-5_5


146 5 Second-Order Logic

Remark There are denumerably many variables of each kind. The number of con-
stants may be arbitrarily large.

Formulas are inductively defined by:

(i) X0
i , P

0
i ,⊥∈ FORM,

(ii) for n > 0 Xn(t1, . . . , tn) ∈ FORM, P n(t1, . . . , tn) ∈ FORM,
(iii) FORM is closed under the propositional connectives,
(iv) FORM is closed under first- and second-order quantification.

Notation We will often write 〈x1, . . . , xn〉 ∈ Xn for Xn(x1, . . . , xn) and we will
usually drop the superscript in Xn.

The semantics of second-order logic is defined in the same manner as in the case
of first-order logic.

Definition 5.1 A second-order structure is a sequence A = 〈A,A∗, c∗,R∗〉,
where A∗ = 〈An|n ∈ N〉, c∗ = {ci |i ∈ N} ⊆ A, R∗ = 〈Rn

i |i, n ∈ N〉, and An ⊆
P(An),Rn

i ∈An.

In words: a second-order structure consists of a universe A of individuals and
second-order universes of n-ary relations (n ≥ 0), individual constants and set (re-
lation) constants, belonging to the various universes.

In case each An contains all n-ary relations (i.e. An =P(An)), we call A full.
Since we have listed ⊥ as a 0-ary predicate constant, we must accommodate it in

the structure A.
In accordance with the customary definitions of set theory, we write 0= ∅,1=

{0} and 2 = {0,1}. Also we take A0 = 1, and hence A0 ⊆ P(A0) = P(1) = 2.
By convention we assign 0 to ⊥. Since we also want a distinct 0-ary predicate
(proposition)� := ¬⊥, we put 1 ∈A0. So, in fact, A0 =P(A0)= 2.

Now, in order to define validity in A, we mimic the procedure of first-order logic.
Given a structure A, we introduce an extended language L(A) with names S for
all elements S of A and An(n ∈ N). The constants Rn

i are interpretations of the
corresponding constant symbols P n

i .
We define A |� ϕ, ϕ is true or valid in A, for closed ϕ.

Definition 5.2

(i) A |� S if S = 1,
(ii) A |� S

n
(s1, . . . , sn) if 〈s1, . . . , sn〉 ∈ Sn,

(iii) the propositional connectives are interpreted as usual (cf. Definition 2.2.1,
Lemma 3.4.5),

(iv) A |� ∀xϕ(x) if A |� ϕ(s) for all s ∈A,
A |� ∃xϕ(x) if A |� ϕ(s) for some s ∈A,

(v) A |� ∀Xnϕ(Xn) if A |� ϕ(Sn) for all Sn ∈An,
A |� ∃Xnϕ(Xn) if A |� ϕ(S

n
) for some Sn ∈An.
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If A |� ϕ we say that ϕ is true, or valid, in A.
As in first-order logic we have a natural deduction system, which consists of the

usual rules for first-order logic, plus extra rules for second-order quantifiers,

ϕ ∀2I∀Xnϕ

∀Xnϕ ∀2E
ϕ∗

ϕ∗ ∃2I∃Xnϕ ∃Xnϕ

[ϕ]
...

ψ ∃2E
ψ

where the conditions on ∀2I and ∃2E are the usual ones, and ϕ∗ is obtained from
ϕ by replacing each occurrence of Xn(t1, . . . , tn) by σ(t1, . . . , tn) for a certain for-
mula σ , such that no free variables among the ti become bound after the substitution.

Note that ∃2I gives us the traditional comprehension schema:

∃Xn∀x1 . . . xn

[
ϕ(x1, . . . , xn)↔Xn(x1, . . . , xn)

]
,

where Xn may not occur free in ϕ.

Proof

∀x1 . . . xn(ϕ(x1, . . . , xn)↔ ϕ(x1, . . . , xn)) ∃2I∃Xn∀x1 . . . xn(ϕ(x1, . . . , xn)↔Xn(x1, . . . , xn))
.

Since the top line is derivable, we have a proof of the desired principle. Con-
versely, ∃2I follows from the comprehension principle, given the ordinary rules of
logic. The proof is sketched here ((x and (t stand for sequences of variables or terms;
assume that Xn does not occur in σ ).

∃Xn∀(x(σ ((x)↔Xn((x))

[∀(x(σ ((x)↔Xn((x))]
σ(
→
t )↔Xn(

→
t ) ϕ(. . . , σ (

→
t ), . . .)

†
ϕ(. . . ,Xn(

→
t ), . . .) ∗∃Xnϕ(. . . ,Xn(
→
t ), . . .)

∃Xnϕ(. . . ,Xn(
→
t ), . . .)

.

�

In † a number of steps are involved, i.e. those necessary for the substitution theo-
rem. In ∗ we have applied a harmless ∃-introduction, in the sense that we went from
an instance involving a variable to an existence statement, exactly as in first-order
logic. This seems to beg the question, as we want to justify ∃2-introduction. How-
ever, on the basis of the ordinary quantifier rules we have justified something much
stronger than ∗ on the assumption of the comprehension schema, namely the intro-
duction of the existential quantifier, given a formula σ and not merely a variable or
a constant.
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Since we can define ∀2 from ∃2 a similar argument works for ∀2E.
The extra strength of the second-order quantifier rules lies in ∀2I and ∃2E.

We can make this precise by considering second-order logic as a special kind of
first-order logic (i.e. “flattening” second-order logic). The basic idea is to intro-
duce special predicates to express the relation between a predicate and its argu-
ments.

So let us consider a first-order logic with a sequence of predicates Ap0, Ap1,
Ap2, Ap3, . . . , such that each Apn is (n+ 1)-ary. We think of Apn(x, y1, . . . , yn) as
xn(y1, . . . , yn).

For n= 0 we get Ap0(x) as a first-order version of X0, but that is in accordance
with our intentions. X0 is a proposition (i.e. something that can be assigned a truth
value), and so is Ap0(x). We now have a logic in which all variables are first order,
so we can apply all the results from the preceding chapters.

For the sake of a natural simulation of second-order logic we add unary predi-
cates V,U0,U1,U2, . . . , to be thought of as “is an element”, “is a o-ary predicate
(i.e. proposition)” “is a 1-ary predicate”, etc.

We now have to indicate axioms of our first-order system that embody the char-
acteristic properties of second-order logic.

(i) ∀xyz(Ui(x)∧Uj (y)∧ V (z)→ x �= y ∧ y �= z∧ z �= x) for all i �= j .
(i.e. the Ui ’s are pairwise disjoint, and disjoint from V ).

(ii) ∀xy1 . . . yn(Apn(x, y1, . . . , yn)→Un(x)∧∧∧
i V (yi)) for n≥ 1.

(i.e. if x, y1, . . . , yn are in the relation Apn, then think of x as a predicate,
and the yi ’s as elements).

(iii) U0(C0,V (C2i+1), for i ≥ 0, and Un(C3i ·5n), for i, n≥ 0.
(i.e. certain constants are designated as “elements” and “predicates”).

(iv) ∀z1 . . . zm∃x[Un(x)∧ ∀y1 . . . yn(
∧∧

V (yi)→ (ϕ∗ ↔ Apn(x, y1, . . . , yn)))],
where x �∈ FV(ϕ∗), see below. (The first-order version of the comprehension

schema. We assume that FV(ϕ)⊆ {z1, . . . , zn, y1, . . . , yn}.
(v) ¬Ap0(C0). So there is a 0-ary predicate for “falsity”.)

We claim that the first-order theory given by the above axioms represents second-
order logic in the following precise way: we can translate second-order logic in the
language of the above theory such that derivability is faithfully preserved.

The translation is obtained by assigning suitable symbols to the various sym-
bols of the alphabet of second-order logic and defining an inductive procedure for
converting composite strings of symbols. We put

(xi)
∗ := x2i+1,

(ci)
∗ := c2i+1, for i ≥ 0,

(
Xn

i

)∗ := x3i ·5n ,

(
P n

i

)∗ := c3i ·5n , for i ≥ 0, n≥ 0′,
(
X0

i

)∗ := Ap0(x3i ), for i ≥ 0,
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(
P 0

i

)∗ := Ap0(c3i ), for i ≥ 0,

(⊥)∗ := Ap0(c0).

Furthermore:

(ϕ�ψ)∗ := ϕ∗�ψ∗ for binary connectives � and,

(¬ϕ)∗ := ¬ϕ∗ and,
(∀xiϕ(xi)

)∗ := ∀x∗i
(
V

(
x∗i

)→ ϕ∗
(
x∗i

))
,

(∃xiϕ(xi)
)∗ := ∃x∗i

(
V

(
x∗i

)∧ ϕ∗
(
x∗i

))
,

(∀Xn
i ϕ

(
Xn

i

))∗ := ∀(Xn
i

)∗(
Un

((
Xn

i

)∗)→ ϕ∗
((

Xn
i

)∗))
,

(∃Xn
i ϕ

(
Xn

i

))∗ := ∃(Xn
i

)∗(
Un

((
Xn

i

)∗)∧ ϕ∗
((

Xn
i

)∗))
.

It is a tedious but routine job to show that �2 ϕ⇔�1 ϕ∗, where 2 and 1 refer to
derivability in the respective second-order and first-order systems.

Note that the above translation could be used as an excuse for not doing second-
order logic at all, were it not for the fact that the first-order version is not nearly
as natural as the second-order one. Moreover, it obscures a number of interesting
and fundamental features; e.g. validity in all principal models (see below) makes
sense for the second-order version, whereas it is rather an extraneous matter for the
first-order version.

Definition 5.3 A second-order structure A is called a model of second-order logic
if the comprehension schema is valid in A.

If A is full (i.e. An = P(An) for all n), then we call A a principal (or standard)
model.

From the notion of model we get two distinct notions of “second-order validity”:
(i) true in all models, (ii) true in all principal models.

Recall that A |� ϕ was defined for arbitrary second-order structures; we will use
|� ϕ for “true in all models”.

By the standard induction on derivations we get �2 ϕ⇒ |� ϕ.
Using the above translation into first-order logic we also get |� ϕ⇒�2 ϕ. Com-

bining these results we get the following theorem.

Theorem 5.4 (Completeness Theorem) �2 ϕ⇔|� ϕ.

Obviously, we also have |� ϕ⇒ ϕ is true in all principal models. The converse,
however, is not the case. We can make this plausible by the following argument:

(i) We can define the notion of a unary function in second-order logic, and hence
the notions “bijective” and “surjective”. Using these notions we can formulate
a sentence σ , which states “the universe (of individuals) is finite” (any injection
of the universe into itself is a surjection).
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(ii) Consider Γ = {σ } ∪ {λn|n ∈ N}. Γ is consistent, because each finite subset
{σ,λn1, . . . , λnk

} is consistent, since it has a second-order model, namely the
principal model over a universe with n elements, where n=max{n1, . . . , nk}.

So, by the Completeness Theorem above Γ has a second-order model. Suppose
now that Γ has a principal model A. Then |A| is actually Dedekind finite, and
(assuming the axiom of choice) finite. Say A has n0 elements, then A �|� λn0+1.
Contradiction.

We see that Γ has no principal model. Hence the Completeness Theorem fails
for validity w.r.t. principal models (and likewise compactness). To find a sentence
that holds in all principal models but fails in some model a more refined argument
is required.

A peculiar feature of second-order logic is the definability of all the usual con-
nectives in terms of ∀ and →.

Theorem 5.5

(a) �2⊥↔∀X0.X0,
(b) �2 ϕ ∧ψ ↔∀X0((ϕ→ (ψ →X0))→X0),
(c) �2 ϕ ∨ψ ↔∀X0((ϕ→X0)∧ (ψ →X0)→X0),
(d) �2 ∃xϕ↔∀X0(∀x(ϕ→X0)→X0),
(e) �2 ∃Xnϕ↔∀X0(∀Xn((ϕ→X0)→X0).

Proof (a) is obvious.
(b)

[ϕ ∧ψ]
ϕ [ϕ→ (ψ →X0)]

ψ →X0

[ϕ ∧ψ]
ψ

X0

(ϕ→ (ψ →X0))→X0

∀X0((ϕ→ (ψ →X0))→X0)

ϕ ∧ψ →∀X0((ϕ→ (ψ →X0))→X0)

.

Conversely,
[ϕ] [ψ]
ϕ ∧ψ

ψ → (ϕ ∧ψ)

ϕ→ (ψ → (ϕ ∧ψ))

∀X0((ϕ→ (ψ →X0))→X0) ∀2E
ϕ→ (ψ → (ϕ ∧ψ))→ ϕ ∧ψ

ϕ ∧ψ

.
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(d)

∃xϕ(x)

[ϕ(x)]
[∀x(ϕ(x)→X)]

ϕ(x)→X

X

∀x(ϕ(x)→X)→X

∀x(ϕ(x)→X)→X

∀X(∀x(ϕ(x)→X)→X)

.

Conversely, [ϕ(x)]
∃xϕ(x)

ϕ(x)→∃xϕ(x)

∀x(ϕ(x)→∃xϕ(x))

∀X(∀x(ϕ(x)→X)→X)

∀x(ϕ(x)→∃xϕ(x))→∃xϕ(x)

∃xϕ(x)

.

(c) and (e) are left to the reader. �

In second-order logic we also have natural means to define identity for individu-
als. The underlying idea, going back to Leibniz, is that equals have exactly the same
properties.

Definition 5.6 (Leibniz Identity) x = y := ∀X(X(x)↔X(y)).

This defined identity has the desired properties, i.e. it satisfies I1, . . . , I4.

Theorem 5.7
(i) �2 x = x.

(ii) �2 x = y→ y = x.
(iii) �2 x = y ∧ y = z→ x = z.
(iv) �2 x = y→ (ϕ(x)→ ϕ(y)).

Proof Obvious. �

In case the logic already has an identity relation for individuals, say
.=, we can

show the following.

Theorem 5.8 �2 x
.= y↔ x = y.

Proof → is obvious, by I4. ← is obtained as follows:

x=̇x

∀X(X(x)↔X(y))

x=̇x↔ x=̇y

x=̇y

.

In ∀2E we have substituted z= x for X(z). �



152 5 Second-Order Logic

We can also use second-order logic to extend Peano arithmetic to second-order
arithmetic.

We consider a second-order logic with (first-order) identity and one binary pred-
icate constant S, which represents, intuitively, the successor relation. The following
special axioms are added:

1. ∃!x∀y¬S(y, x).
2. ∀x∃!yS(x, y).
3. ∀xyz(S(x, z)∧ S(y, z)→ x = y).

For convenience we extend the language with numerals and the successor
function. This extension is conservative anyway, under the following axioms:

(i) ∀y¬S(y,0),
(ii) S(n,n+ 1),

(iii) y = x+ ↔ S(x, y).
We now write down the induction axiom (N.B., not a schema, as in first-order

arithmetic, but a proper axiom!).
4. ∀X(X(0)∧ ∀x(X(x)→X(x+))→∀xX(x)).

The extension from first-order to second-order arithmetic is not conservative. It
is, however, beyond our modest means to prove this fact.

One can also use the idea behind the induction axiom to give a (inductive) def-
inition of the class of natural numbers in a second-order logic with axioms (1),
(2), (3): N is the smallest class containing 0 and closed under the successor opera-
tion.

Let ν(x) := ∀X[(X(0)∧ ∀y(X(y)→X(y+))→X(x)].
Then, by the comprehension axiom ∃Y∀x(ν(x)↔ Y(x)).
As yet we cannot assert the existence of a unique Y satisfying ∀x(ν(x)↔ Y(x)),

since we have not yet introduced identity for second-order terms.
Therefore, let us add identity relations for the various second-order terms, plus

their obvious axioms.
Now we can formulate the axiom of extensionality.

Axiom of Extensionality

∀(x(
Xn((x)↔ Yn((x)

)↔Xn = Yn.

So, finally, with the help of the axiom of extensionality, we can assert
∃!Y∀x(ν(x)↔ Y(x)). Thus we can conservatively add a unary predicate constant
N with axiom ∀x(ν(x)↔N(x)).

The axiom of extensionality is on the one hand rather basic—it allows defini-
tion by abstraction (“the set of all x, such that . . .”)—and on the other hand rather
harmless—we can always turn a second-order model without extensionality into
one with extensionality by taking a quotient with respect to the equivalence relation
induced by =.
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Exercises

1. Show that the restriction on Xn in the comprehension schema cannot be
dropped (consider ¬X(x)).

2. Show Γ �2 ϕ⇔ Γ ∗ �1 ϕ∗ (where Γ ∗ = {ψ∗|ψ ∈ Γ }).
Hint: use induction on the derivation, with the comprehension schema and

simplified ∀-, ∃-rules. For the quantifier rules it is convenient to consider an
intermediate step consisting of a replacement of the free variable by a fresh
constant of the proper kind.

3. Prove (c) and (e) of Theorem 5.5.
4. Prove Theorem 5.7.
5. Give a formula ϕ(X2), which states that X2 is a function.
6. Give a formula ϕ(X2) which states that X2 is a linear order.
7. Give a sentence σ which states that the individuals can be linearly ordered with-

out having a last element (σ can serve as an infinity axiom).
8. Given second-order arithmetic with the successor function, give axioms for ad-

dition as a ternary relation.
9. Let a second-order logic with a binary predicate constant < be given with extra

axioms that make < a dense linear ordering without endpoints. We write x < y

for <(x,y). X is a Dedekind cut if ∃xX(x)∧∃x¬X(x)∧∀x(X(x)∧ y < x→
X(y)). Define a partial ordering on the Dedekind cuts by putting X ≤ X′ :=
∀x(X(x)→X′(x)). Show that this partial order is total.

10. Consider the first-order version of second-order logic (involving the predicates
Apn,Un,V ) with the axiom of extensionality. Any model A of this first-order
theory can be “embedded” in the principal second-order model over LA = {a ∈
|A||A |� V (a)}, as follows.

Define for any r ∈Un f (r)= {〈a1, . . . , an〉|A |� Apn(r, a1, . . . , an)}.
Show that f establishes an “isomorphic” embedding of A into the corre-

sponding principal model. Hence principal models can be viewed as unique
maximal models of second-order logic.

11. Formulate the axiom of choice—for each number x there is a set X . . .—in
second-order arithmetic.

12. Show that in Definition 5.6 a single implication suffices.



Chapter 6
Intuitionistic Logic

6.1 Constructive Reasoning

In the preceding chapters, we have been guided by the following, seemingly harm-
less extrapolation from our experience with finite sets: infinite universes can be sur-
veyed in their totality. In particular can we in a global manner determine whether
A |� ∃xϕ(x) holds, or not? To adapt Hermann Weyl’s phrasing: we are used to think-
ing of infinite sets not merely as defined by a property, but as sets whose elements
are so to speak spread out in front of us, so that we can run through them just as an
officer in the police department goes through his file. This view of the mathematical
universe is an attractive but rather unrealistic idealization. If one takes our limita-
tions in the face of infinite totalities seriously, then one has to read a statement like
“there is a prime number greater than 101010

” in a stricter way than “it is impossible
that the set of primes is exhausted before 101010

”. For we cannot inspect the set of
natural numbers at a glance and detect a prime. We have to exhibit a prime p greater
than 101010

.
Similarly, one might be convinced that a certain problem (e.g. the determination

of the saddle point of a zero-sum game) has a solution on the basis of an abstract
theorem (such as Brouwer’s fixed point theorem). Nonetheless one cannot always
exhibit a solution. What one needs is a constructive method (proof) that determines
the solution.

Let us give one more example to illustrate the restrictions of abstract methods.
Consider the problem: “Are there two irrational numbers a and b such that ab is

rational?” We apply the following smart reasoning: suppose
√

2
√

2
is rational, then

we have solved the problem. Should
√

2
√

2
be irrational then (

√
2
√

2
)
√

2 is rational.
In both cases there is a solution, so the answer to the problem is yes. However,
should somebody ask us to produce such a pair a, b, then we have to engage in
some serious number theory in order to come up with the right choice between the
numbers mentioned above.

Evidently, statements can be read in a non-constructive way, as we did in the pre-
ceding chapters, and in a constructive way. In this chapter we will briefly sketch the
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logic one uses in constructive reasoning. In mathematics the practice of construc-
tive procedures and reasoning has been advocated by a number of people, but the
founding fathers of constructive mathematics clearly are L. Kronecker and L.E.J.
Brouwer. The latter presented a complete program for the rebuilding of mathemat-
ics on a constructive basis. Brouwer’s mathematics (and the accompanying logic) is
called intuitionistic, and in this context the traditional non-constructive mathematics
(and logic) is called classical.

There are a number of philosophical issues connected with intuitionism, for
which we refer the reader to the literature, cf. Dummett, Troelstra–van Dalen.

Since we can no longer base our interpretations of logic on the fiction that the
mathematical universe is a predetermined totality which can be surveyed as a whole,
we have to provide a heuristic interpretation of the logical connectives in intuition-
istic logic. We will base our heuristics on the proof interpretation put forward by
A. Heyting. A similar semantics was proposed by A. Kolmogorov; the proof inter-
pretation is called the Brouwer–Heyting–Kolmogorov (BHK) interpretation.

The point of departure is that a statement ϕ is considered to be true (or to hold) if
we have a proof for it. By a proof we mean a mathematical construction that estab-
lishes ϕ, not a deduction in some formal system. For example, a proof of “2+3= 5”
consists of the successive constructions of 2,3 and 5, followed by a construction that
adds 2 and 3, followed by a construction that compares the outcome of this addition
and 5.

The primitive notion is here “a proves ϕ”, where we understand by a proof a
(for our purpose unspecified) construction. We will now indicate how proofs of
composite statements depend on proofs of their parts.

(∧) a proves ϕ ∧ψ := a is a pair 〈b, c〉 such that b proves ϕ and c proves ψ .
(∨) a proves ϕ∨ψ := a is a pair 〈b, c〉 such that b is a natural number and if b= 0

then c proves ϕ, if b �= 0 then c proves ψ .
(→) a proves ϕ → ψ := a is a construction that converts any proof p of ϕ into a

proof a(p) of ψ .
(⊥) no a proves ⊥.

In order to deal with the quantifiers we assume that some domain D of objects
is given.

(∀) a proves ∀xϕ(x) := a is a construction such that for each b ∈D a(b) proves
ϕ(b).

(∃) a proves ∃xϕ(x) := a is a pair (b, c) such that b ∈D and c proves ϕ(b).

The above explanation of the connectives serves as a means of giving the reader
a feeling for what is and what is not correct in intuitionistic logic. It is generally
considered to be the intended intuitionistic meaning of the connectives.

Examples

1. ϕ∧ψ → ϕ is true, for let 〈a, b〉 be a proof of ϕ∧ψ , then the construction c with
c(a, b)= a converts a proof of ϕ∧ψ into a proof of ϕ. So c proves (ϕ∧ψ → ϕ).

2. (ϕ ∧ψ → σ)→ (ϕ→ (ψ → σ)). Let a prove ϕ ∧ψ → σ , i.e. a converts each
proof 〈b, c〉 of ϕ ∧ ψ into a proof a(b, c) of σ . Now the required proof p of
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ϕ→ (ψ → σ) is a construction that converts each proof b of ϕ into a p(b) of
ψ → σ . So p(b) is a construction that converts a proof c of ψ into a proof
(p(b))(c) of σ . Recall that we had a proof a(b, c) of σ , so put (p(b))(c) =
a(b, c); let q be given by q(c)= a(b, c), then p is defined by p(b)= q . Clearly,
the above contains the description of a construction that converts a into a proof
p of ϕ→ (ψ → σ). (For those familiar with the λ-notation: p = λb.λc.a(b, c),
so λa.λb.λc.a(b, c) is the proof we are looking for.)

3. ¬∃xϕ(x)→∀x¬ϕ(x).
We will now argue a bit more informally. Suppose we have a construction a

that reduces a proof of ∃xϕ(x) to a proof of ⊥. We want a construction p that
produces for each d ∈D a proof of ϕ(d)→⊥, i.e. a construction that converts a
proof of ϕ(d) into a proof of ⊥. So let b be a proof of ϕ(d), then 〈d, b〉 is a proof
of ∃xϕ(x), and a(d, b) is a proof of ⊥. Hence p with (p(d))(b) = a(d, b) is a
proof of ∀x¬ϕ(x). This provides us with a construction that converts a into p.

The reader may try to justify some statements for himself, but he should not
worry if the details turn out to be too complicated. A convenient handling of these
problems requires a bit more machinery than we have at hand (e.g. λ-notation).
Note, by the way, that the whole procedure is not unproblematic since we assume a
number of closure properties of the class of constructions.

Now that we have given a rough heuristics of the meaning of the logical con-
nectives in intuitionistic logic, let us move on to a formalization. As it happens, the
system of natural deduction is almost right. The only rule that lacks constructive
content is that of reductio ad absurdum (RAA). As we have seen (p. 36), an appli-
cation of RAA yields � ¬¬ϕ→ ϕ, but for ¬¬ϕ→ ϕ to hold informally we need a
construction that transforms a proof of ¬¬ϕ into a proof of ϕ. Now a proves ¬¬ϕ

if a transforms each proof b of ¬ϕ into a proof of ⊥, i.e. there cannot be a proof b

of¬ϕ. b itself should be a construction that transforms each proof c of ϕ into a proof
of ⊥. So we know that there cannot be a construction that turns a proof of ϕ into a
proof of ⊥, but that is a long way from the required proof of ϕ! (See Example 1.)

6.2 Intuitionistic Propositional and Predicate Logic

We adopt all the rules of natural deduction for the connectives ∨,∧,→,⊥,∃,∀ with
the exception of the rule RAA. In order to cover both propositional and predicate
logic in one sweep we allow in the alphabet (cf. Sect. 3.3, p. 55) 0-ary predicate
symbols, usually called proposition symbols.

Strictly speaking we deal with a derivability notion different from the one intro-
duced earlier (cf. p. 34), since RAA is dropped; therefore we should use a distinct
notation, e.g. �i . However, we will continue to use � when no confusion arises.

We can now adopt all results of the preceding parts that did not make use of RAA.
The following list may be helpful.
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Lemma 6.2.1

(1) � ϕ ∧ψ ↔ψ ∧ ϕ (p. 31)
(2) � ϕ ∨ψ ↔ψ ∨ ϕ

(3) � (ϕ ∧ψ)∧ σ ↔ ϕ ∧ (ψ ∧ σ)

(4) � (ϕ ∨ψ)∨ σ ↔ ϕ ∨ (ψ ∨ σ)

(5) � ϕ ∨ (ψ ∧ σ)↔ (ϕ ∨ψ)∧ (ϕ ∨ σ)

(6) � ϕ ∧ (ψ ∨ σ)↔ (ϕ ∧ψ)∨ (ϕ ∧ σ)

(7) � ϕ→¬¬ϕ (p. 31)
(8) � (ϕ→ (ψ → σ))↔ (ϕ ∧ψ → σ) (p. 31)
(9) � ϕ→ (ψ → ϕ) (p. 35)

(10) � ϕ→ (¬ϕ→ψ) (p. 35)
(11) � ¬(ϕ ∨ψ)↔¬ϕ ∧¬ψ

(12) � ¬ϕ ∨¬ψ →¬(ϕ ∧ψ)

(13) � (¬ϕ ∨ψ)→ (ϕ→ψ)

(14) � (ϕ→ψ)→ (¬ψ →¬ϕ) (p. 35)
(15) � (ϕ→ψ)→ ((ψ → σ)→ (ϕ→ σ)) (p. 35)
(16) �⊥↔ (ϕ ∧¬ϕ) (p. 35)
(17) � ∃x(ϕ(x)∨ψ(x))↔∃xϕ(x)∨ ∃xψ(x)

(18) � ∀x(ϕ(x)∧ψ(x))↔∀xϕ(x)∧ ∀xψ(x)

(19) � ¬∃xϕ(x)↔∀x¬ϕ(x)

(20) � ∃x¬ϕ(x)→¬∀xϕ(x)

(21) � ∀x(ϕ→ψ(x))↔ (ϕ→∀xψ(x))

(22) � ∃x(ϕ→ψ(x))→ (ϕ→∃xψ(x))

(23) � (ϕ ∨ ∀xψ(x))→∀x(ϕ ∨ψ(x))

(24) � (ϕ ∧ ∃xψ(x))↔∃x(ϕ ∧ψ(x))

(25) � ∃x(ϕ(x)→ψ)→ (∀xϕ(x)→ψ)

(26) � ∀x(ϕ(x)→ψ)↔ (∃xϕ(x)→ψ).

(Observe that (19) and (20) are special cases of (26) and (25).)
All of those theorems can be proved by means of straightforward application of

the rules. Some well-known theorems are conspicuously absent, and in some cases
there is only an implication one way; we will show later that these implications
cannot, in general, be reversed.

From a constructive point of view RAA is used to derive strong conclusions from
weak premises. For example, in ¬(ϕ ∧ψ) � ¬ϕ ∨¬ψ the premise is weak (some-
thing has no proof) and the conclusion is strong, it asks for an effective decision. One
cannot expect to get such results in intuitionistic logic. Instead there is a collection
of weak results, usually involving negations and double negations.

Lemma 6.2.2

(1) � ¬ϕ↔¬¬¬ϕ

(2) � (ϕ ∧¬ψ)→¬(ϕ→ψ)

(3) � (ϕ→ψ)→ (¬¬ϕ→¬¬ψ)

(4) � ¬¬(ϕ→ψ)↔ (¬¬ϕ→¬¬ψ)
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(5) � ¬¬(ϕ ∧ψ)↔ (¬¬ϕ ∧¬¬ψ)

(6) � ¬¬∀xϕ(x)→∀x¬¬ϕ(x).

In order to abbreviate derivations we will use the notation Γ
ϕ

in a derivation when

there is a derivation for Γ � ϕ (Γ has 0,1 or 2 elements).

Proof (1) ¬ϕ→¬¬¬ϕ follows from Lemma 6.2.1 (7). For the converse we again
use Lemma 6.2.1(7):

[ϕ]1
=======
ϕ→¬¬ϕ

¬¬ϕ [¬¬¬ϕ]2
⊥

1
¬ϕ

2
¬¬¬ϕ→¬ϕ

[ϕ ∧¬ψ]2
ϕ [ϕ→ψ]1

ψ

[ϕ ∧¬ψ]2
¬ψ

⊥
1

¬(ϕ→ψ)
2

(ϕ ∧¬ψ)→¬(ϕ→ψ)

[¬¬ϕ]3

[ϕ]1 [ϕ→ψ]4
ψ [¬ψ]2

⊥
1

¬ϕ

⊥
2

¬¬ψ
3

¬¬ϕ→¬¬ψ
4

(ϕ→ψ)→ (¬¬ϕ→¬¬ψ)

We prove (3) also by using (14) and (15) from Lemma 6.2.1.
(4) Apply the intuitionistic half of the contraposition (Lemma 6.2.1 (14)) to (2):

[¬¬(ϕ→ψ)]4===========¬(ϕ ∧¬ψ)

[ϕ]1 [¬ψ]2
ϕ ∧¬ψ

⊥
1¬ϕ [¬¬ϕ]3

⊥
2¬¬ψ

3¬¬ϕ→¬¬ψ
4¬¬(ϕ→ψ)→ (¬¬ϕ→¬¬ψ)
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For the converse we apply some facts from Lemma 6.2.1:

[¬(ϕ→ψ)]1==========¬(¬ϕ ∨ψ)========¬¬ϕ ∧¬ψ

¬¬ϕ [¬¬ϕ→¬¬ψ]2
¬¬ψ

[¬(ϕ→ψ)]1==========¬(¬ϕ ∨ψ)========¬¬ϕ ∧¬ψ

¬ψ

⊥
1¬¬(ϕ→ψ)

2
(¬¬ϕ→¬¬ψ)→¬¬(ϕ→ψ)

(5)→: Apply (3) to ϕ ∧ψ → ϕ and ϕ ∧ψ →ψ . The derivation of the converse
is given below.

[¬¬ϕ ∧¬¬ψ]4
¬¬ψ

[¬(ϕ ∧ψ)]3
[ϕ]1 [ψ]2

ϕ ∧ψ

⊥
1¬ϕ

[¬¬ϕ ∧¬¬ψ]4
¬¬ϕ

⊥
2¬ψ

⊥
3¬¬(ϕ ∧ψ)

4
(¬¬ϕ ∧¬¬ψ)→¬¬(ϕ ∧ψ)

(6) � ∃x¬ϕ(x)→¬∀xϕ(x), Lemma 6.2.1 (20)
so ¬¬∀xϕ(x)→¬∃x¬ϕ(x), Lemma 6.2.1 (14)
hence ¬¬∀xϕ(x)→∀x¬¬ϕ(x), Lemma 6.2.1 (19).

Most of the straightforward meta-theorems of propositional and predicate logic
carry over to intuitionistic logic. The following theorems can be proved by a tedious
but routine induction. �

Theorem 6.2.3 (Substitution Theorem for Derivations) If D is a derivation and $
a propositional atom, then D[ϕ/$] is a derivation if the free variables of ϕ do not
occur bound in D.

Theorem 6.2.4 (Substitution Theorem for Derivability) If Γ � σ and is a propo-
sitional atom, then Γ [ϕ/$] � σ [ϕ/$], where the free variables of ϕ do not occur
bound in σ or Γ .
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Theorem 6.2.5 (Substitution Theorem for Equivalence)

Γ � (ϕ1 ↔ ϕ2)→
(
ψ[ϕ1/$] ↔ψ[ϕ2/$]),

Γ � ϕ1 ↔ ϕ2 ⇒ Γ � bψ[ϕ1/$] ↔ψ[ϕ2/$],
where is an atomic proposition, the free variables of ϕ1 and ϕ2 do not occur bound
in Γ or ψ and the bound variables of ψ do not occur free in Γ .

The proofs of the above theorems are left to the reader. Theorems of this kind are
always suffering from unaesthetic variable conditions. In practical applications one
always renames bound variables or considers only closed hypotheses, so that there
is not much to worry about. For precise formulations cf. Chap. 7.

The reader will have observed from the heuristics that ∨ and ∃ carry most of
the burden of constructiveness. We will demonstrate this once more in an informal
argument.

There is an effective procedure to compute the decimal expansion of
π(3.1415927 . . .). Let us consider the statement ϕn := in the decimal expansion
of π there is a sequence of n consecutive sevens.

Clearly ϕ100 → ϕ99 holds, but there is no evidence whatsoever for ¬ϕ100 ∨ ϕ99.
The fact that ∧,→,∀,⊥ do not ask for the kind of decisions that ∨ and ∃ require,

is more or less confirmed by the following.

Theorem 6.2.6 If ϕ does not contain ∨ or ∃ and all atoms but ⊥ in ϕ are negated,
then � ϕ↔¬¬ϕ.

Proof Induction on ϕ.
We leave the proof to the reader. (Hint: apply Lemma 6.2.2.) �

By definition intuitionistic predicate (propositional) logic is a subsystem of the
corresponding classical systems. Gödel and Gentzen have shown, however, that by
interpreting the classical disjunction and existence quantifier in a weak sense, we
can embed classical logic into intuitionistic logic. For this purpose we introduce a
suitable translation.

Definition 6.2.7 The mapping ◦ : FORM→ FORM is defined by

(i) ⊥◦:=⊥ and ϕ◦ := ¬¬ϕ for atomic ϕ distinct from ⊥,
(ii) (ϕ ∧ψ)◦ := ϕ◦ ∧ψ◦,

(iii) (ϕ ∨ψ)◦ := ¬(¬ϕ◦ ∧ ¬ψ◦),
(iv) (ϕ→ψ)◦ := ϕ◦ →ψ◦,
(v) (∀xϕ(x))◦ := ∀xϕ◦(x),

(vi) (∃xϕ(x))◦ := ¬∀x¬ϕ◦(x).

This mapping is called the Gödel translation.
We define Γ ◦ = {ϕ◦|ϕ ∈ Γ }. The relation between classical derivability (�c) and
intuitionistic derivability (�i ) is given by the following.
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Theorem 6.2.8 Γ �c ϕ⇔ Γ ◦ �i ϕ◦.

Proof It follows from the preceding chapters that �c ϕ ↔ ϕ◦, therefore ⇐ is an
immediate consequence of Γ �i ϕ⇒ Γ �c ϕ.

For ⇒, we use induction on the derivation D of ϕ from Γ .

1. ϕ ∈ Γ , then also ϕ◦ ∈ Γ ◦ and hence Γ ◦ �i ϕ◦.
2. The last rule of D is a propositional introduction or elimination rule. We consider

two cases:

→ I [ϕ]
D

ψ

ϕ→ψ

Induction hypothesis Γ ◦, ϕ◦ �i ψ◦.
By→ I Γ ◦ �i ϕ◦ →ψ◦, and so by definition
Γ ◦ �i (ϕ→ψ)◦.

∨E

D

ϕ ∨ψ

[ϕ]
D1

σ

[ψ]
D2

σ

σ

Induction hypothesis :Γ ◦ �i (ϕ ∨ψ)◦,
Γ ◦, ϕ◦ �i σ ◦Γ ◦,ψ◦ �i σ ◦
(where Γ contains all uncancelled
hypotheses involved).

Γ ◦ �i ¬(¬ϕ◦ ∧ ¬ψ◦),Γ ◦ �i ϕ◦ → σ ◦,Γ ◦ �i ψ◦ → σ ◦.

The result follows from the derivation below:

¬(¬ϕ◦ ∧ ¬ψ◦)

[ϕ◦]1 ϕ◦ → σ ◦

σ ◦ [¬σ ◦]3
⊥

1
¬ϕ◦

[ψ◦]2 ψ◦ → σ ◦

σ ◦ [¬σ ◦]3
⊥

2
¬ψ◦

¬ϕ◦ ∧ ¬ψ◦

⊥
3

¬¬σ ◦
=====

σ ◦

The remaining rules are left to the reader.
3. The last rule of D is the falsum rule. This case is obvious.
4. The last rule of D is a quantifier introduction or elimination rule. Let us consider

two cases:

∀I D

ϕ(x)

∀xϕ(x)

Induction hypothesis: Γ ◦ �i ϕ(x)◦
By ∀I Γ ◦ �i ∀xϕ(x)◦, so Γ ◦ �i (∀xϕ(x))◦.
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∃E : D

∃xϕ(x)

[ϕ(x)]
D1

σ

σ

Induction hypothesis: Γ ◦ �i (∃xϕ(x))◦,
Γ ◦, ϕ(x)◦ �i σ ◦.
So Γ ◦ �i (¬∀x¬ϕ(x))◦ and
Γ ◦ �i ∀x(ϕ(x)◦ → σ ◦).

¬∀x¬ϕ(x)◦

[ϕ(x)◦]1
∀x(ϕ(x)◦ → σ ◦)

ϕ(x)◦ → σ ◦

σ ◦ [¬σ ◦]2
⊥

1¬ϕ(x)◦

∀x¬ϕ(x)◦

⊥
2¬¬σ ◦=====

σ ◦

We now get Γ ◦ �i σ ◦.
5. The last rule of D is RAA.

[¬ϕ] Induction hypothesis Γ ◦, (¬ϕ)◦ �i⊥ .

D so Γ ◦ �i ¬¬ϕ◦, and hence by Theorem 6.2.6 Γ ◦ �i ϕ◦
⊥ .
ϕ

�

Let us call formulas in which all atoms occur negated, and those which contain
only the connectives ∧,→,∀,⊥, negative.

The special role of ∨ and ∃ is underlined by the following.

Corollary 6.2.9 Classical predicate (propositional) logic is conservative over in-
tuitionistic predicate (propositional) logic with respect to negative formulas, i.e.
�c ϕ⇔�i ϕ for negative ϕ.

Proof ϕ◦, for negative ϕ, is obtained by replacing each atom p by ¬¬p. Since
all atoms occur negated we have �i ϕ◦ ↔ ϕ (apply Lemma 6.2.2(1) and Theo-
rem 6.2.6). The result now follows from Theorem 6.2.8. �

In some particular theories (e.g. arithmetic) the atoms are decidable, i.e. Γ �
ϕ ∨¬ϕ for atomic ϕ. For such theories one may simplify the Gödel translation by
putting ϕ◦ := ϕ for atomic ϕ.

Observe that Corollary 6.2.9 tells us that intuitionistic logic is consistent iff clas-
sical logic is so (a not very surprising result!).

For propositional logic we have a somewhat stronger result than Theorem 6.2.8.
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Theorem 6.2.10 (Glivenko’s Theorem) �c ϕ⇔�i ¬¬ϕ.

Proof Show by induction on ϕ that �i ϕ◦ ↔ ¬¬ϕ (use Lemma 6.2.2), and apply
Theorem 6.2.8. �

6.3 Kripke Semantics

There are a number of (more or less formalized) semantics for intuitionistic logic
that allow for a completeness theorem. We will concentrate here on the semantics
introduced by Kripke since it is convenient for applications and it is fairly simple.

Heuristic Motivation Think of an idealized mathematician (in this context tra-
ditionally called the creative subject), who extends both his knowledge and his uni-
verse of objects in the course of time. At each moment k he has a stock Σk of
sentences, which he, by some means, has recognized as true and a stock Ak of ob-
jects which he has constructed (or created). Since at every moment k the idealized
mathematician has various choices for his future activities (he may even stop al-
together), the stages of his activity must be thought of as being partially ordered,
and not necessarily linearly ordered. How will the idealized mathematician inter-
pret the logical connectives? Evidently the interpretation of a composite statement
must depend on the interpretation of its parts; e.g. the idealized mathematician has
established ϕ or (and) ψ at stage k if he has established ϕ at stage k or (and) ψ at
stage k. The implication is more cumbersome, since ϕ→ψ may be known at stage
k without ϕ or ψ being known. Clearly, the idealized mathematician knows ϕ→ψ

at stage k if he knows that if at any future stage (including k) ϕ is established, also
ψ is established. Similarly ∀xϕ(x) is established at stage k if at any future stage
(including k) for all objects a that exist at that stage ϕ(a) is established.

Evidently in the case of the universal quantifier we must take the future into ac-
count since for all elements means more than just “for all elements that we have
constructed so far”! Existence, on the other hand, is not relegated to the future.
The idealized mathematician knows at stage k that ∃xϕ(x) if he has constructed an
object a such that at stage k he has established ϕ(a). Of course, there are many ob-
servations that could be made, for example that it is reasonable to add “in principle”
to a number of clauses. This takes care of large numbers, choice sequences, etc.
Think of ∀xy∃z(z= xy); does the idealized mathematician really construct 1010 as
a succession of units? For this and similar questions the reader is referred to the
literature.

We will now formalize the above sketched semantics.
For a first introduction it is convenient to consider a language without function

symbols. Later it will be simple to extend the language.
We consider models for some language L.

Definition 6.3.1 A Kripke model is a quadruple K = 〈K,Σ,C,D〉, where K is a
(non-empty) partially ordered set, C a function defined on the constants of L, D a
set-valued function on K,Σ a function on K such that
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• C(c) ∈D(k) for all k ∈K ,
• D(k) �= ∅ for all k ∈K ,
• Σ(k)⊆Atk for all k ∈K ,

where Atk is the set of all atomic sentences of L with constants for the elements of
D(k). D and Σ satisfy the following conditions:

(i) k ≤ l⇒D(k)⊆D(l),
(ii) ⊥�∈Σ(k), for all k,

(iii) k ≤ l⇒Σ(k)⊆Σ(l).

D(k) is called the domain of K at k, the elements of K are called nodes of K.
Instead of “ϕ has auxiliary constants for elements of D(k)” we say for short “ϕ has
parameters in D(k)”.

Σ assigns to each node the “basic facts” that hold at k, the conditions (i), (ii),
(iii) merely state that the collection of available objects does not decrease in time,
that a falsity is never established and that a basic fact that once has been established
remains true in later stages. The constants are interpreted by the same elements in
all domains (they are rigid designators).

Note that D and Σ together determine at each node k a classical structure A(k)

(in the sense of Definition 3.2.1). The universe of A(k) is D(k) and the relations of
A(k) are given by Σ(k) as the positive diagram: 〈(a〉 ∈ RA(k) iff R((a) ∈Σ(k). The
conditions (i) and (iii) above tell us that the universes are increasing:

k ≤ l ⇒ ∣
∣A(k)

∣
∣⊆ ∣

∣A(l)
∣
∣

and that the relations are increasing:

k ≤ l ⇒ RA(k) ⊆RA(l).

Furthermore cA(k) = cA(l) for all k and l.
In Σ(k) there are also propositions, something we did not allow in classical pred-

icate logic. Here it is convenient for treating propositional and predicate logic simul-
taneously.

The function Σ tells us which atoms are “true” in k. We now extend Σ to all
sentences.

Lemma 6.3.2 Σ has a unique extension to a function on K (also denoted by Σ )
such that Σ(k) ⊆ Sentk , the set of all sentences with parameters in D(k), satisfy-
ing:

(i) ϕ ∨ψ ∈Σ(k)⇔ ϕ ∈Σ(k) or ψ ∈Σ(k),
(ii) ϕ ∧ψ ∈Σ(k)⇔ ϕ ∈Σ(k) and ψ ∈Σ(k),

(iii) ϕ→ψ ∈Σ(k)⇔ for all l ≥ k (ϕ ∈Σ(l)⇒ψ ∈Σ(l)),
(iv) ∃xϕ(x) ∈Σ(k)⇔ there is an a ∈D(k) such that ϕ(a) ∈Σ(k),
(v) ∀xϕ(x) ∈Σ(k)⇔ for all l ≥ k and for all a ∈D(l) ϕ(a) ∈Σ(l).

Proof Immediate. We simply define ϕ ∈Σ(k) for all k ∈K simultaneously by in-
duction on ϕ. �
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Notation We write k �ϕ for ϕ ∈Σ(k), pronouncing it as “k forces ϕ”.
Exercise for the reader: reformulate (i)–(v) above in terms of forcing.

Corollary 6.3.3 (i) k �¬ϕ⇔ for all l ≥ k l ��ϕ.
(ii) k �¬¬ϕ⇔ for all l ≥ k there exists a p ≥ l such that (p �ϕ).

Proof k �¬ϕ⇔ k �ϕ→⊥⇔ for all l ≥ k(l �ϕ⇒ l � ⊥)⇔ for all l ≥ k l ��ϕ.
k �¬¬ϕ ⇔ for all l ≥ k l ��¬ϕ ⇔ for all l ≥ k not (for all p ≥ l p ��ϕ) ⇔ for all
l ≥ k there is a p ≥ l such that p �ϕ. �

The monotonicity of Σ for atoms is carried over to arbitrary formulas.

Lemma 6.3.4 (Monotonicity of �) k ≤ l, k �ϕ⇒ l �ϕ.

Proof Induction on ϕ.

Atomic ϕ: The lemma holds by Definition 6.3.1.
ϕ = ϕ1 ∧ ϕ2: Let k �ϕ1 ∧ ϕ2 and k ≤ l, then k �ϕ1 ∧ ϕ2 ⇔ k �ϕ1 and k �ϕ2 ⇒
(ind. hyp.) l �ϕ1 and l �ϕ2 ⇔ l �ϕ1 ∧ ϕ2.

ϕ = ϕ1 ∨ ϕ2: Mimic the conjunction case.
ϕ = ϕ1 → ϕ2 Let k �ϕ1 → ϕ2, l ≥ k. Suppose p ≥ l and p �ϕ1 then, since p ≥ k,

p �ϕ2. Hence l �ϕ1 → ϕ2.
ϕ = ∃xϕ1(x): Immediate.
ϕ = ∀xϕ1(x): Let k �∀xϕ1(x) and l ≥ k. Suppose p ≥ l and a ∈D(p), then, since
p ≥ k,p �ϕ1(a). Hence l �∀xϕ1(x). �

We will now present some examples, which refute classically true formulas. It
suffices to indicate which atoms are forced at each node. We will simplify the pre-
sentation by drawing the partially ordered set and indicating the atoms forced at
each node. For propositional logic no domain function is required (equivalently,
a constant one, say D(k)= {0}), so we simplify the presentation accordingly.

(a) In the bottom node no atoms are known, in the second one only ϕ, to be precise
k0 ��ϕ, k1 �ϕ. By Corollary 6.3.3 k0 �¬¬ϕ, so k0 ��¬¬ϕ→ ϕ. Note, however,
that k0 ��¬ϕ, since k1 �ϕ. So k0 ��ϕ ∨¬ϕ.

(b) ki ��ϕ ∧ ψ (i = 0,1,2), so k0 �¬(ϕ ∧ ψ). By definition, k0 �¬ϕ ∨ ¬ψ ⇔
k0 �¬ϕ or k0 �¬ψ . The first is false, since k1 �ϕ, and the latter is false, since
k2 �ψ . Hence k0 ��¬(ϕ ∧ψ)→¬ϕ ∨¬ψ .
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(c) The bottom node forces ψ → ϕ, but it does not force ¬ψ ∨ϕ (why?). So it does
not force (ψ → ϕ)→ (¬ψ ∨ ϕ).

(d) In the bottom node the following implications are forced: ϕ2 → ϕ1, ϕ3 →
ϕ2, ϕ3 → ϕ1, but none of the converse implications is forced, hence k0 ��(ϕ1 ↔
ϕ2)∨ (ϕ2 ↔ ϕ3)∨ (ϕ3 ↔ ϕ1).

We will analyse the last example a bit further. Consider a Kripke model with
two nodes as in d , with some assignment Σ of atoms. We will show that for
four arbitrary propositions σ1, σ2, σ3, σ4k0 �∨∨

1≤i<j≤4
σi ↔ σj , i.e. from any

four propositions at least two are equivalent.
There are a number of cases. (1) At least two of σ1, σ2, σ3, σ4 are forced

in k0. Then we are done. (2) Just one σi is forced in k0. Then of the remaining
propositions, either two are forced in k1, or two of them are not forced in k1.
In both cases there are σj and σj ′ , such that k0 �σj ↔ σj ′ . (3) No σi is forced
in k0. Then we may repeat the argument under (2).

(e) (i) k0 �ϕ → ∃xσ(x), for the only node that forces ϕ is k1, and indeed
k1 �σ(1), so k1 �∃xσ(x).
Now suppose k0 �∃x(ϕ→ σ(x)), then, since D(k0)= {0}, k0 �ϕ→ σ(0).
But k1 �ϕ and k1 ��σ(0).
Contradiction. Hence k0 ��(ϕ→∃xσ(x))→∃x(ϕ→ σ(x)).

Remark (ϕ → ∃xσ(x))→ ∃x(ϕ → σ(x)) is called the independence of premise
principle. It is not surprising that it fails in some Kripke models, for ϕ →∃xσ(x)

tells us that the required element a for σ(a) may depend on the proof of ϕ (in
our heuristic interpretation); while in ∃x(ϕ→ σ(x)), the element a must be found
independently of ϕ. So the right-hand side is stronger.

(ii) k0 �¬∀xψ(x) ⇔ ki ��∀xψ(x)(i = 0,1). k1 ��ψ(1), so we have shown
k0 �¬∀xψ(x). k0 �∃x¬ψ(x) ⇔ k0 �¬ψ(0). However, k1 �ψ(0), so
k0 ��∃x¬ψ(x). Hence k0 ��¬∀xψ(x)→∃x¬ψ(x).

(iii) A similar argument shows k0 ��(∀xψ(x)→ τ)→ ∃x(ψ(x)→ τ), where
τ is not forced in k1.
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(f) D(ki) = {0, . . . , i},Σ(ki) = {ϕ(0), . . . , ϕ(i − 1)}, k0 �∀x¬¬ϕ(x) ⇔ for all
i ki �¬¬ϕ(j), j ≤ i. The latter is true since for all p > i kp � ϕ(j), j ≤ i.
Now k0 �¬¬∀xϕ(x)⇔ for all i there is a j ≥ i such that kj �∀xϕ(x). But no
kj forces ∀xϕ(x). So k0 ��∀x¬¬ϕ(x)→¬¬∀xϕ(x).

Remark We have seen that ¬¬∀xϕ(x)→ ∀x¬¬ϕ(x) is derivable and it is easily
seen that it holds in all Kripke models, but the converse fails in some models. The
schema ∀x¬¬ϕ(x)→¬¬∀xϕ(x) is called the double negation shift (DNS).

The next thing to do is to show that Kripke semantics is sound for intuitionistic
logic.

We define a few more notions for sentences:

(i) K �ϕ if k �ϕ for all k ∈K .
(ii) �ϕ if K �ϕ for all K.

For formulas containing free variables we have to be more careful. Let ϕ contain
free variables, then we say that k �ϕ iff k �Cl(ϕ) (the universal closure). For a
set Γ and a formula ϕ with free variables xi0, xi1, xi2, . . . (which we will denote
by (x), we define Γ �ϕ by: for all K, k ∈K and for all ((a ∈D(k)) [k �ψ((a) for all
ψ ∈ Γ ⇒ k �ϕ((a)]. ((a ∈D(k) is a convenient abuse of language.)

Before we proceed we introduce an extra abuse of language which will prove
extremely useful: we will freely use quantifiers in our meta-language. It will have
struck the reader that the clauses in the definition of the Kripke semantics abound
with expressions like “for all l ≥ k”, “for all a ∈D(k)”. It saves quite a bit of writing
to use “∀l ≥ k”, “∀a ∈D(k)” instead, and it increases systematic readability to boot.
By now the reader is well used to the routine phrases of our semantics, so he will
have no difficulty avoiding a confusion of quantifiers in the meta-language and the
object language.

By way of example we will reformulate the preceding definition:

Γ �ϕ := (∀K)(∀k ∈K)(∀(a ∈D(k))
[∀ψ ∈ Γ (k �ψ((a))⇒ k �ϕ((a)

]
.

There is a useful reformulation of this “semantic consequence” notion.

Lemma 6.3.5 Let Γ be finite, then Γ �ϕ⇔ �Cl(
∧∧

Γ → ϕ) (where Cl(X) is the
universal closure of X).

Proof Left to the reader. �

Theorem 6.3.6 (Soundness Theorem) Γ � ϕ⇒ Γ �ϕ.

Proof Use induction on the derivation D of ϕ from Γ . We will abbreviate “k �ψ((a)

for all ψ ∈ Γ ” by “k �Γ ((a)”. The model K is fixed in the proof.

(1) D consists of just ϕ, then obviously k �Γ ((a)⇒ k �ϕ((a) for all k and ((a) ∈
D(k).
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(2) D ends with an application of a derivation rule.

(∧I ) Induction hypothesis: ∀k∀(a ∈ D(k)(k �Γ ((a) ⇒ k �ϕi((a)), for i =
1,2. Now choose a k ∈ K and (a ∈ D(k) such that k �Γ ((a), then
k �ϕ1((a) and k �ϕ2((a), so k �(ϕ1 ∧ ϕ2)((a).
Note that the choice of (a did not really play a role in this proof. To
simplify the presentation we will suppress reference to (a, when it does
not play a role.

(∧E) Immediate.
(∨I ) Immediate.
(∨E) Induction hypothesis: ∀k(k �Γ ⇒ k �ϕ ∨ ψ),∀k(k �Γ,ϕ ⇒ k �σ),

∀k(k �Γ,ψ ⇒ k �σ). Now let k �Γ , then by the ind. hyp. k �ϕ ∨ψ ,
so k �ϕ or k �ψ . In the first case k �Γ,ϕ, so k �σ . In the second case
k �Γ,ψ , so k �σ . In both cases k �σ , so we are done.

(→ I ) Induction hypothesis: (∀k)(∀(a ∈ D(k))(k �Γ ((a),ϕ((a) ⇒ k �ψ((a)).
Now let k �Γ ((a) for some (a ∈D(k). We want to show k �(ϕ→ψ)((a),
so let l ≥ k and l �ϕ((a). By monotonicity l �Γ ((a), and (a ∈ D(l), so
the ind. hyp. tells us that l �ψ((a). Hence ∀l ≥ k(l �ϕ((a)⇒ l �ψ((a)),
so k �(ϕ→ψ)((a).

(→E) Immediate.
(⊥) Induction hypothesis: ∀k(k �Γ ⇒ k � ⊥). Since, evidently, no k can

force Γ , ∀k(k �Γ ⇒ k �ϕ) is correct.
(∀I ) The free variables in Γ are (x, and z does not occur in the sequence

(x. Induction hypothesis: (∀k)(∀(a, b ∈ D(k))(k �Γ ((a)⇒ k �ϕ((a, b)).
Now let k �Γ ((a) for some (a ∈D(k), we must show k �∀zϕ((a, z). So
let l ≥ k and b ∈D(l). By monotonicity l �Γ ((a) and (a ∈D(l), so by
the ind. hyp. l �ϕ((a, b). This shows (∀l ≥ k)(∀b ∈ D(l))(l �ϕ((a, b)),
and hence k �∀zϕ((a, z).

(∀E) Immediate.
(∃I ) Immediate.
(∃E) Induction hypothesis: (∀k)(∀(a ∈D(k))(k �Γ ((a)⇒ k �∃zϕ((a, z)) and

(∀k)(∀(a, b ∈ D(k))(k �ϕ((a, b), k �Γ ((a)⇒ k �σ((a)). Here the vari-
ables in Γ and σ are (x, and z does not occur in the sequence (x. Now
let k �Γ ((a), for some (a ∈D(k), then k �∃zϕ((a, z). So let k �ϕ((a, b)

for some b ∈D(k). By the induction hypothesis k �σ((a). �

For the Completeness Theorem we need some notions and a few lemmas.

Definition 6.3.7 A set of sentences Γ is a prime theory with respect to a language
L if

(i) Γ is closed under �,
(ii) ϕ ∨ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ ,

(iii) ∃xϕ(x) ∈ Γ ⇒ ϕ(c) ∈ Γ for some constant c in L.

The following is an analogue of the Henkin construction combined with a maxi-
mal consistent extension.
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Lemma 6.3.8 Let Γ and ϕ be closed, then if Γ �� ϕ, there is a prime theory Γ ′ in a
language L′, extending Γ such that Γ ′ �� ϕ.

Proof In general one has to extend the language L of Γ by a suitable set of “wit-
nessing” constants. So we extend the language L of Γ by a denumerable set of
constants to a new language L′. The required theory Γ ′ is obtained by series of
extensions Γ0 ⊆ Γ1 ⊆ Γ2 . . . . We put Γ0 := Γ .

Let Γk be given such that Γk �� ϕ and Γk contains only finitely many new con-
stants. We consider two cases.

k is even. Look for the first existential sentence ∃xψ(x) in L′ that has not yet been
treated, such that Γk � ∃xψ(x). Let c be the first new constant not in Γk . Now put
Γk+1 := Γk ∪ {ψ(c)}.

k is odd. Look for the first disjunctive sentence ψ1∨ψ2 with Γk �ψ1∨ψ2 that has
not yet been treated. Note that not both Γk,ψ1 � ϕ and Γk,ψ2 � ϕ for then by ∨E

Γk � ϕ.
Now we put:

Γk+1 :=
{

Γk ∪ {ψ1} if Γk,ψ1 �� ϕ

Γk ∪ {ψ2} otherwise.

Finally:

Γ ′ :=
⋃

k≥0

Γk.

There are a few things to be shown:

1. Γ ′ �� ϕ. We first show Γi �� ϕ by induction on i. For i = 0, Γ0 �� ϕ holds by
assumption. The induction step is obvious for i odd. For i even we suppose
Γi+1 � ϕ. Then Γi,ψ(c) � ϕ. Since Γi � ∃xψ(x), we get Γi � ϕ by ∃E, which
contradicts the induction hypothesis. Hence Γi+1 �� ϕ, and therefore by complete
induction Γi �� ϕ for all i.
Now, if Γ ′ � ϕ then Γi � ϕ for some i. Contradiction.

2. Γ ′ is a prime theory.
(a) Let ψ1 ∨ ψ2 ∈ Γ ′ and let k be the least number such that Γk � ψ1 ∨ ψ2.

Clearly ψ1 ∨ ψ2 has not been treated before stage k, and Γh � ψ1 ∨ ψ2 for
h ≥ k. Eventually ψ1 ∨ ψ2 has to be treated at some stage h ≥ k, so then
ψ1 ∈ Γh+1 or ψ2 ∈ Γh+1, and hence ψ1 ∈ Γ ′ or ψ2 ∈ Γ ′.

(b) Let ∃xψ(x) ∈ Γ ′, and let k be the least number such that Γk � ∃xψ(x). For
some h≥ k ∃xψ(x) is treated, and hence ψ(c) ∈ Γh+1 ⊆ Γ ′ for some c.

(c) Γ ′ is closed under �. If Γ ′ �ψ , then Γ ′ �ψ ∨ψ , and hence by (a) ψ ∈ Γ ′.

Conclusion: Γ ′ is a prime theory containing Γ , such that Γ ′ �� ϕ. �

The next step is to construct for closed Γ and ϕ with Γ �� ϕ, a Kripke model,
with K �Γ and k ��ϕ for some k ∈K .
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Lemma 6.3.9 (Model Existence Lemma) If Γ �� ϕ then there is a Kripke model K
with a bottom node k0 such that k0 �Γ and k0 ��ϕ.

Proof We first extend Γ to a suitable prime theory Γ ′ such that Γ ′ �� ϕ. Γ ′ has
the language L′ with the set of constants C′. Consider a set of distinct constants
{ci

m|i ≥ 0,m ≥ 0} disjoint with C′. A denumerable family of denumerable sets of
constants is given by Ci = {ci

m|m≥ 0}. We will construct a Kripke model over the
poset of all finite sequences of natural numbers, including the empty sequence 〈 〉,
with their natural ordering, “initial segment of”.

Define C(〈 〉) := C′ and C((n) = C(〈〉) ∪ C0 ∪ · · · ∪ Ck−1 for (n of positive
length k. L((n) is the extension of L with the set of atoms At((n), obtained from
the constants from C((n). Note that L((n) only depends on the length |(n| of (n; for
convenience we denote it by L|(n|. Now put D((n) := C((n).

We define1 Σ((n) by induction on the length of (n. We construct simultaneously a
collection of (prime) theories Γ ((n).

1. Σ(〈 〉) := Γ ′ ∩At(〈 〉), Γ (〈 〉)= Γ ′.
2. Suppose Σ((n) and Γ ((n) are given. Consider an enumeration 〈σ0, τ0〉, 〈σ1, τ1〉,
〈σ2, τ2〉, . . . of all pairs of sentences in L|(n|+1 such that Γ ((n),σi �� τi in the lan-
guage L|(n|+1. The sentences σi and τi are in the language L|(n|+1, they involve
only finitely many constants of L|(n|+1. Hence we may apply Lemma 6.3.8 to
Γ ((n)∪ {σi} and τi . That is, taking away the fresh constants from σi and τi , there
remain denumerably many fresh constants to carry out the construction described
in the lemma. This yields a prime theory Γ ((n, i) with the same language L((n, i)

(= L|(n|+1) such that σi ∈ Γ ((n, i) and τi �∈ Γ ((n, i).

Now put Σ((n, i) := Γ ((n, i) ∩ At((n, i). We observe that all conditions for
a Kripke model are met. The model very much reflects (like the model of
Lemma 4.1.11) the nature of the prime theories involved.

Claim (n �ψ ⇔ Γ ((n) �ψ .

We prove the claim by induction on ψ .

• For atomic ψ the equivalence holds by definition.
• ψ =ψ1 ∧ψ2—immediate.
• ψ =ψ1 ∨ψ2.

(a) (n �ψ1 ∨ ψ2 ⇔ (n �ψ1 or (n �ψ2 ⇒ (ind. hyp.) Γ ((n) � ψ1 or Γ ((n) � ψ2 ⇒
Γ ((n) �ψ1 ∨ψ2.

(b) Γ ((n) �ψ1∨ψ2 ⇒ Γ ((n) �ψ1 or Γ ((n) �ψ2, since Γ ((n) is a prime theory (in
the right language L((n)). So, by the induction hypothesis, (n �ψ1 or (n �ψ2,
and hence (n �ψ1 ∨ψ2.

• ψ =ψ1 →ψ2.

1I am indebted to Masahiko Rokuyama for noting a gap in the following construction and argu-
ment, and to Katsuhiko Sano for its correction.
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(a) (n �ψ1 → ψ2. Suppose Γ ((n) �� ψ1 → ψ2, then Γ ((n),ψ1 �� ψ2. By the defi-
nition of the model there is an extension (m= 〈n0, . . . , nk−1, i〉 of (n such that
Γ ((n) ∪ {ψ1} ⊆ Γ ( (m) and Γ ( (m) �� ψ2. By the induction hypothesis (m �ψ1
and by (m≥ (n and (n �ψ1 → ψ2, (m �ψ2. Applying the induction hypothesis
once more we get Γ ( (m) �ψ2. Contradiction. Hence Γ ((n) �ψ1 →ψ2.

(b) The converse is simple; left to the reader.

• ψ = ∀xψ(x).

(a) Let (n �∀xϕ(x), and assume Γ ((n) �� ∀xϕ(x) in L|(n|, hence, by conservativity,
Γ ((n) �� ∀xϕ(x) in L|(n|+1 (see Exercise 6).

Now pick a constant c in L|(n|+1 but not in L|(n|.
If Γ ((n) � ϕ(c) in L|(n|+1, then Γ ((n) � ∀xϕ(x) in L|(n|+1.
So we conclude Γ ((n) � ϕ(c) in L|(n|+1. Then Γ ((n, i) � ϕ(c) for a suitable

i (take � for σi and ϕ(c) for τi in the above construction).
Now, by the induction hypothesis (n, i � ϕ(c), which contradicts (n �

∀xϕ(x).
(b) Γ ((n) � ∀xϕ(x). Suppose (n ��∀xϕ(x), then (m ��ϕ(c) for some (m≥ (n and for

some c ∈ L( (m), hence Γ ( (m) �� ϕ(c) and therefore Γ ( (m) �� ∀xϕ(x). Contra-
diction.

• ψ = ∃xϕ(x).
The implication from left to right is obvious. For the converse we use the fact

that Γ ((n) is a prime theory. The details are left to the reader.

We can now finish our proof. The bottom node forces Γ and ϕ is not forced. �

We can get some extra information from the proof of the Model Existence
Lemma: (i) the underlying partially ordered set is a tree, (ii) all sets D( (m) are denu-
merable.

From the Model Existence Lemma we easily derive the following.

Theorem 6.3.10 (Completeness Theorem—Kripke) Γ �i ϕ ⇔ Γ �ϕ (Γ and ϕ

closed).

Proof We have already shown ⇒. For the converse we assume Γ ��i ϕ and apply
Lemma 6.3.9, which yields a contradiction. �

Actually we have proved the following refinement: intuitionistic logic is com-
plete for countable models over trees.

The above results are completely general (safe for the cardinality restriction
on L), so we may as well assume that Γ contains the identity axioms I1, . . . , I4
(3.6). May we also assume that the identity predicate is interpreted by the real equal-
ity in each world? The answer is no; this assumption constitutes a real restriction, as
the following theorem shows.

Theorem 6.3.11 If for all k ∈ K k �a = b ⇒ a = b for a, b ∈ D(k) then
K �∀xy(x = y ∨ x �= y).
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Proof Let a, b ∈D(k) and k ��a = b, then a �= b, not only in D(k), but in all D(l)

for l ≥ k, hence for all l ≥ k, l ��a = b, so k �a �= b. �

For a kind of converse, cf. Exercise 18.
The fact that the relation a ∼k b in A(k), given by k �a = b, is not the identity

relation is definitely embarrassing for a language with function symbols. So let us
see what we can do about it. We assume that a function symbol F is interpreted in
each k by a function Fk . We require k ≤ l⇒ Fk ⊆ Fl . F has to obey I4 : ∀(x (y((x =
(y→ F((x)= F((y)). For more about functions see Exercise 34.

Lemma 6.3.12 The relation ∼k is a congruence relation on A(k), for each k.

Proof Straightforward, by interpreting I1 − I4. �

We may drop the index k; this means that we consider a relation ∼ on the whole
model, which is interpreted node-wise by the local ∼k’s.

We now define new structures by taking equivalence classes: A�(k) :=A(k)/∼k ,
i.e. the elements of |A�(k)| are equivalence classes a/∼k of elements a ∈D(k), and
the relations are canonically determined by

R�
k(a/∼, . . .) ⇔ Rk(a, . . .), similarly for the functions F�

k (a/∼, . . .) =
Fk(a, . . .)/∼.

The inclusion A(k) ⊆ A(l), for k ≤ l, is now replaced by a map fkl : A�(k)→
A�(l), where fkl is defined by fkl(a)= aA(l) for a ∈ |A�(k)|. To be precise:

a/∼k %−→ a/∼l , so we have to show a ∼k a′ ⇒ a ∼l a′ to ensure the well-
definedness of fkl . This, however, is obvious, since k �a = a′ ⇒ l �a = a′.

Claim 6.3.13 fkl is a homomorphism.

Proof Let us look at a binary relation. R�
k(a/∼, b/∼)⇔Rk(a, b)⇔ k �R(a, b)⇒

l �R(a, b)⇔Rl(a, b)⇔R�
l (a/∼, b/∼).

The case of an operation is left to the reader. �

The upshot is that we can define a modified notion of a Kripke model.

Definition 6.3.14 A modified Kripke model for a language L is a triple K =
〈K,A, f 〉 such that K is a partially ordered set, A and f are mappings such that
for k ∈ K,A(k) is a structure for L and for k, l ∈ K with k ≤ l f (k, l) is a homo-
morphism from A(k) to A(l) and f (l,m) ◦ f (k, l)= f (k,m),f (k, k)= id.

Notation We write fkl for f (k, l), and k ��ϕ for A(k) |� ϕ, for atomic ϕ.

Now one may mimic the development presented for the original notion of Kripke
semantics.

In particular the connection between the two notions is given by the next lemma.
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Lemma 6.3.15 Let K� be the modified Kripke model obtained from K by dividing
out ∼. Then k �ϕ((a)⇔ k ��ϕ((a/∼) for all k ∈K .

Proof Left to the reader. �

Corollary 6.3.16 Intuitionistic logic (with identity) is complete with respect to mod-
ified Kripke semantics.

Proof Apply Theorem 6.3.10 and Lemma 6.3.15. �

We will usually work with ordinary Kripke models, but for convenience we will
often replace inclusions of structures A(k)⊆ A(l) by inclusion mappings A(k) ↪→
A(l).

6.4 Some Model Theory

We will give some simple applications of Kripke’s semantics. The first ones concern
the disjunction and existence properties.

Definition 6.4.1 A set of sentences Γ has the

(i) Disjunction property (DP) if Γ � ϕ ∨ψ ⇒ Γ � ϕ or Γ �ψ .
(ii) Existence property (EP) if Γ � ∃xϕ(x)⇒ Γ � ϕ(t) for some closed term t

(where ϕ ∨ψ and ∃xϕ(x) are closed).

In a sense DP and EP reflect the constructive character of the theory Γ (in the
frame of intuitionistic logic), since it makes explicit the clause “if we have a proof of
∃xϕ(x), then we have a proof of a particular instance”, and similarly for disjunction.

Classical logic does not have DP or EP, for consider in propositional logic p0 ∨
¬p0. Clearly �c p0 ∨¬p0, but neither �c p0 nor �c ¬p0!

Theorem 6.4.2 Intuitionistic propositional and predicate logic without function
symbols have DP.

Proof Let � ϕ∨ψ , and suppose �� ϕ and ��ψ , then there are Kripke models K1 and
K2 with bottom nodes k1 and k2 such that k1 ��ϕ and k2 ��ψ .
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It is no restriction to suppose that the partially ordered sets K1,K2 of K1 and K2

are disjoint.
We define a new Kripke model with K = K1 ∪K2 ∪ {k0} where k0 �∈ K1 ∪K2

(see the picture for the ordering).

We define A(k)=
⎧
⎨

⎩

A1(k) for k ∈K1,

A2(k) for k ∈K2,

|A| for k = k0,

where |A| consists of all the constants of L, if there are any, otherwise |A| contains
only one element a. The inclusion mapping for A(k0) ↪→A(ki) (i = 1,2) is defined
by c %→ cA(ki ) if there are constants; if not, we pick ai ∈A(ki) arbitrarily and define
f01(a)= a1, f02(a)= a2. A satisfies the definition of a Kripke model.

The models K1 and K2 are “submodels” of the new model in the sense that the
forcing induced on Ki by that of K is exactly its old forcing, cf. Exercise 13. By
the Completeness Theorem k0 � ϕ ∨ ψ , so k0 �ϕ or k0 �ψ . If k0 �ϕ, then k1 �ϕ.
Contradiction. If k0 � ψ , then k2 � ψ . Contradiction. So �� ϕ and �� ψ are not true,
hence � ϕ or �ψ . �

Observe that this proof can be considerably simplified for propositional logic.
All we have to do is place an extra node under k1 and k2 in which no atom is forced
(cf. Exercise 19).

Theorem 6.4.3 Let the language of intuitionistic predicate logic contain at least
one constant and no function symbols; then EP holds.

Proof Let � ∃xϕ(x) and �� ϕ(c) for all constants c. Then for each c there is a Kripke
model Kc with bottom node kc such that kc � �ϕ(c). Now mimic the argument of
Theorem 6.4.2 above, by taking the disjoint union of the Kc’s and adding a bottom
node k0. Use the fact that k0 �∃xϕ(x). �

The reader will have observed that we reason about our intuitionistic logic and
model theory in a classical meta-theory. In particular we use the principle of the
excluded third in our meta-language. This indeed detracts from the constructive na-
ture of our considerations. For the present we will not bother to make our arguments
constructive; it may suffice to remark that classical arguments can often be circum-
vented, cf. Chap. 7.

In constructive mathematics one often needs stronger notions than the classical
ones. A paradigm is the notion of inequality. For example, in the case of the real
numbers it does not suffice to know that a number is unequal (i.e. not equal) to 0
in order to invert it. The procedure that constructs the inverse for a given Cauchy
sequence requires that there exists a number n such that the distance of the given
number to zero is greater than 2−n. Instead of a negative notion we need a positive
one. This was introduced by Brouwer, and formalized by Heyting.
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Definition 6.4.4 A binary relation # is called an apartness relation if

(i) ∀xy(x = y↔¬x#y),
(ii) ∀xy(x#y↔ y#x),

(iii) ∀xyz(x#y→ x#z∨ y#z).

Examples

1. For rational numbers the inequality is an apartness relation.
2. If the equality relation on a set is decidable (i.e. ∀xy(x = y ∨ x �= y)), then �= is

an apartness relation (Exercise 22).
3. For real numbers the relation |a − b|> 0 is an apartness relation (cf. Troelstra–

van Dalen, 2.7, 2.8).

We call the theory with axioms (i), (ii), (iii) of Definition 6.4.4 AP, the theory
of apartness (obviously, the identity axiom x1 = x2 ∧ y1 = y2 ∧ x1#y1 → x2#y2 is
included).

Theorem 6.4.5 AP � ∀xy(¬¬x = y→ x = y).

Proof Observe that ¬¬x = y↔¬¬¬x#y↔¬x#y↔ x = y. �

We call an equality relation that satisfies the condition ∀xy(¬¬x = y → x = y)

stable. Note that stable is essentially weaker than decidable (Exercise 23).
In the passage from intuitionistic theories to classical ones by adding the prin-

ciple of the excluded third usually many notions are collapsed, e.g. ¬¬x = y and
x = y. Or conversely, when passing from classical theories to intuitionistic ones (by
deleting the principle of the excluded third) there is a choice of the right notions.
Usually (but not always) the strongest notions fare best. An example is the notion of
linear order.

The theory of linear order, LO, has the following axioms:

(i) ∀xyz(x < y ∧ y < z→ x < z),
(ii) ∀xyz(x < y→ z < y ∨ x < z),

(iii) ∀xy(x = y↔¬x < y ∧¬y < x).

One might wonder why we did not choose the axiom ∀xyz(x < y ∨ x = y ∨ y < x)

instead of (ii), it certainly would be stronger! There is a simple reason: the axiom is
too strong, it does not hold, e.g. for the reals.

We will next investigate the relation between linear order and apartness.

Theorem 6.4.6 The relation x < y ∨ y < x is an apartness relation.

Proof An exercise in logic. �

Conversely, Smoryǹski has shown how to introduce an order relation in a Kripke
model of AP: let K �AP, then in each D(k) the following is an equivalence relation:
k ��a#b.
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(a) k �a = a↔¬a#a, since k �a = a we get k �¬a#a and hence k ��a#a.
(b) k �a#b↔ b#a, so obviously k ��a#b⇔ k ��b#a.
(c) Let k ��a#b, k ��b#c and suppose k �a#c, then by axiom (iii) k �a#b or k �c#b,

which contradicts the assumptions. So k ��a#c.

Observe that this equivalence relation contains the one induced by the identity;
k �a = b⇒ k ��a#b. The domains D(k) are thus split up in equivalence classes,
which can be linearly ordered in the classical sense. Since we want to end up with
a Kripke model, we have to be a bit careful. Observe that equivalence classes may
be split by passing to a higher node, e.g. if k < l and k ��a#b then l �a#b is very
well possible, but l ��a#b⇒ k ��a#b. We take an arbitrary ordering of the equiva-
lence classes of the bottom node (using the axiom of choice in our meta-theory if
necessary). Next we indicate how to order the equivalence classes in an immediate
successor l of k.

The “new” elements of D(l) are indicated by the shaded part.

(i) Consider an equivalence class [a0]k in D(k), and look at the corresponding set
â0 :=⋃{[a]l |a ∈ [a0]k}.
This set splits in a number of classes; we order those linearly. Denote the equiv-
alence classes of â0 by a0b (where b is a representative). Now the classes be-
longing to the b’s are ordered, and we order all the classes on

⋃{â0|a0 ∈D(k)}
lexicographically according to the representation a0b.

(ii) Finally we consider the new equivalence classes, i.e. of those that are not equiv-
alent to any b in

⋃{â0|a0 ∈D(k)}. We order those classes and put them in that
order behind the classes of case (i).

Under this procedure we order all equivalence classes in all nodes.
We now define a relation Rk for each k: Rk(a, b) := [a]k < [b]k , where < is the

ordering defined above. By our definition k < l and Rk(a, b)⇒Rl(a, b).
We leave it to the reader to show that I4 is valid, i.e. in particular k �∀xyz(x =

z∧ x < y→ z < y), where < is interpreted by Rk .

Observe that in this model the following holds:

(#) ∀xy(x#y↔ x < y ∨ y < x),



178 6 Intuitionistic Logic

for in all nodes k, k �a#b↔ k �a < b or k �b < a.
Now we must check the axioms of linear order.

(i) Transitivity. k0 �∀xyz(x < y ∧ y < z → x < z) ⇔ for all k ≥ k0, for all
a, b, c ∈D(k)k �a < b∧b < c→ a < c⇔ for all k ≥ k0, for all a, b, c ∈D(k)

and for all l ≥ k l �a < b and l �b < c⇒ l �a < c.
So we have to show Rl(a, b) and Rl(b, c)⇒Rl(a, c), but that is indeed the

case by the linear ordering of the equivalence classes.
(ii) (Weak) linearity. We must show k0 �∀xyz(x < y → z < y ∨ x < z). Since in

our model ∀xy(x#y ↔ x < y ∨ y < x) holds the problem is reduced to pure
logic. Show: AP+∀xyz(x < y ∧ y < z→ x < z)+∀xy(x#y↔ x < y ∨ y <

x) � ∀xyz(x < y→ z < y ∨ x < z).
We leave the proof to the reader.

(iii) Anti-symmetry. We must show k0 �∀xy(x = y ↔¬x < y ∧ ¬y < x). As be-
fore the problem is reduced to logic. Show:

AP+∀xy(x#y↔ x < y ∨ y < x) � ∀xy(x = y↔¬x < y ∧¬y < x).

Now we have finished the job—we have put a linear order on a model with an
apartness relation. We can now draw some conclusions.

Theorem 6.4.7 AP+LO+ (#) is conservative over LO.

Proof Immediate, by Theorem 6.4.6. �

Theorem 6.4.8 (van Dalen–Statman) AP+LO+ (#) is conservative over AP.

Proof Suppose AP �� ϕ, then by the Model Existence Lemma there is a tree model
K of AP such that the bottom node k0 does not force ϕ.

We now carry out the construction of a linear order on K , the resulting model
K∗ is a model of AP+ LO+ (#), and, since ϕ does not contain <,k0 ��ϕ. Hence
AP+LO+ (#) �� ϕ. This shows the conservative extension result:

AP+LO+ (#) � ϕ⇒AP � ϕ, for ϕ in the language of AP. �

There is a convenient tool for establishing elementary equivalence between
Kripke models.

Definition 6.4.9 (i) A bisimulation between two posets A and B is a relation R ⊆
A×B such that for each a, a′, b with a ≤ a′, aRb there is an element b′ with a′Rb′
and for each a, b, b′ with aRb,b ≤ b′ there is an element a′ such that a′Rb′.

(ii) R is a bisimulation between propositional Kripke models A and B if it is a
bisimulation between the underlying posets and if aRb⇒Σ(a)=Σ(b) (i.e. a and
b force the same atoms).

Bisimulations are useful to establish elementary equivalence node-wise.

Lemma 6.4.10 Let R be a bisimulation between A and B, then for all a, b,ϕ, aRb⇒
(a �ϕ⇔ b �ϕ).
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Proof Induction on ϕ. For atoms and conjunctions and disjunctions the result is
obvious.

Consider ϕ = ϕ1 → ϕ2.
Let aRb and a �ϕ1 → ϕ2. Suppose b ��ϕ1 → ϕ2, then for some b′ ≥ b b′ �ϕ1

and b′ ��ϕ2. By definition, there is an a′ ≥ a such that a′Rb′. By the induction hy-
pothesis a′ �ϕ1 and a′ ��ϕ2. Contradiction.

The converse is completely similar. �

Corollary 6.4.11 If R is a total bisimulation between A and B, i.e. domR =
A, ranR = B , then A and B are elementarily equivalent (A �ϕ⇔ B �ϕ).

We end this chapter by giving some examples of models with unexpected prop-
erties.

1.

f is the identity and g is the canonical ring homomorphism Z→ Z/(2).
K is a model of the ring axioms (p. 82).
Note that k0 �3 �= 0, k0 ��2 = 0, k0 ��2 �= 0 and k0 ��∀x(x �= 0 → ∃y(xy =

1)), but also k0 ��∃x(x �= 0∧ ∀y(xy �= 1)). We see that K is a commutative ring
in which not all non-zero elements are invertible, but in which it is impossible to
exhibit a non-invertible, non-zero element.

2.

Again f and g are the canonical homomorphisms. K is an intuitionistic, com-
mutative ring, as one easily verifies.
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K has no zero divisors: k0 �¬∃xy(x �= 0 ∧ y �= 0 ∧ xy = 0) ⇔ for all
i ki ��∃xy(x �= 0∧ y �= 0∧ xy = 0). (1)
For i = 1,2 this is obvious, so let us consider i = 0. k0 �∃xy(x �= 0 ∧ y �= 0 ∧
xy = 0)⇔ k0 �m �= 0∧ n �= 0∧mn= 0 for some m,n. So m �= 0, n �= 0,mn=
0. Contradiction. This proves (1).

The cardinality of the model is rather undetermined. We know k0 �∃xy(x �=
y)—take 0 and 1, and k0 �¬∃x1x2x3x4

∧∧
1≤i<j≤4 xi �= xj . But note that

k0 ��∃x1x2x3
∧∧

1≤i<j≤3 xi �= xj , k0 ��∀x1x2x3x4
∨∨

1≤i<j≤4 xi = xj and
k0 ��¬∃x1x2x3

∧∧
1≤i<j≤3 xi �= xj .

Observe that the equality relation in K is not stable: k0 �¬¬0 = 6, but
k0 ��0= 6.

3.

Sn is the (classical) symmetric group on n elements. Choose n ≥ 3. k0 forces
the group axioms (p. 80). k0 �¬∀xy(xy = yx), but k0 ��∃xy(xy �= yx), and
k0 ��∀xy(xy = yx). So this group is not commutative, but one cannot indicate
non-commuting elements.

4.

Define an apartness relation by k1 �a#b⇔ a �= b in Z/(2), idem for k2. Then
K �∀x(x#0→∃y(xy = 1)).

This model is an intuitionistic field, but we cannot determine its characteristic.
k1 �∀x(x + x = 0), k2 �∀x(x + x + x = 0). All we know is K �∀x(6 · x = 0).

In the short introduction to intuitionistic logic that we have presented we have
only been able to scratch the surface. We have intentionally simplified the issues so
that a reader can get a rough impression of the problems and methods without going
into the finer foundational details. In particular we have treated intuitionistic logic
in a classical meta-mathematics, e.g. we have freely applied proof by contradiction
(cf. Theorem 6.3.10). Obviously this does not do justice to constructive mathematics
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as an alternative mathematics in its own right. For this and related issues the reader
is referred to the literature. A more constructive approach is presented in the next
chapter.

Exercises

1. (Informal mathematics). Let ϕ(n) be a decidable property of natural numbers
such that neither ∃nϕ(n) nor ∀n¬ϕ(n) has been established (e.g. “n is the
largest number such that n and n+ 2 are prime”). Define a real number a by
the Cauchy sequence:

an :=
{∑n

i=1 2−i if ∀k < n¬ϕ(k)
∑k

i=1 2−i if k < n and ϕ(k) and ¬ϕ(i) for i < k.

Show that (an) is a Cauchy sequence and that “¬¬a is rational”, but there is no
evidence for “a is rational”.

2. Prove
� ¬¬(ϕ→ψ)→ (ϕ→¬¬ψ), � ¬¬(ϕ ∨¬ϕ),

� ¬(ϕ ∧¬ϕ), � ¬¬(¬¬ϕ→ ϕ),

¬¬ϕ,¬¬(ϕ→ψ) � ¬¬ψ, � ¬¬(ϕ→ψ)↔¬(ϕ ∧¬ψ),

� ¬(ϕ ∨ψ)↔¬(¬ϕ→ψ).

3. (a) ϕ ∨¬ϕ,ψ ∨¬ψ � (ϕ�ψ)∨¬(ϕ�ψ), where � ∈ {∧,∨,→}.
(b) Let the proposition ϕ have atoms p0, . . . , pn, show

∧∧
(pi ∨ ¬pi) � ϕ ∨

¬ϕ.
4. Define the double negation translation ϕ¬¬ of ϕ by placing ¬¬ in front of each

subformula. Show �i ϕ◦ ↔ ϕ¬¬ and �c ϕ⇔�i ϕ¬¬.
5. Show that for propositional logic �i ¬ϕ⇔�c ¬ϕ.
6. Intuitionistic arithmetic HA (Heyting’s arithmetic) is the first-order intuition-

istic theory with the axioms of p. 82 as mathematical axioms. Show HA �
∀xy(x = y∨x �= y) (use the principle of induction). Show that the Gödel trans-
lation works for arithmetic, i.e. PA � ϕ⇔HA � ϕ◦ (where PA is Peano (clas-
sical) arithmetic). Note that we need not doubly negate the atoms.

7. Show that PA is conservative over HA with respect to formulas not containing
∨ and ∃.

8. Show that HA � ϕ ∨ψ ↔∃x((x = 0→ ϕ)∧ (x �= 0→ψ)).
9. (a) Show �� (ϕ→ψ)∨ (ψ → ϕ); �� (¬¬ϕ→ ϕ)→ (ϕ ∨¬ϕ);

�� ¬ϕ ∨¬¬ϕ; �� (¬ϕ→ψ ∨ σ)→[(¬ϕ→ψ)∨ (¬ϕ→ σ)];
��∨∨

1≤i<j≤n(ϕi ↔ ϕj ), for all n > 2.

(b) Use the Completeness Theorem to establish the following theorems:
(i) ϕ→ (ψ → ϕ)

(ii) (ϕ ∨ ϕ)→ ϕ

(iii) ∀xyϕ(x, y)→∀yxϕ(x, y)

(iv) ∃x∀yϕ(x, y)→∀y∃xϕ(x, y).
(c) Show k �∀xyϕ(x, y)⇔∀l ≥ k∀a, b ∈D(l) l �ϕ(a, b).

k ��ϕ→ψ ⇔∃l ≥ k(l �ϕ and l ��ψ).
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10. Give the simplified definition of a Kripke model for (the language of) propo-
sitional logic by considering the special case of Definition 6.3.1 with Σ(k)

consisting of propositional atoms only, and D(k)= {0} for all k.
11. Give an alternative definition of a Kripke model based on the “structure map”

k %→ A(k) and show the equivalence with Definition 6.3.1 (without proposi-
tional atoms).

12. Prove the Soundness Theorem using Lemma 6.3.5.
13. A subset K ′ of a partially ordered set K is closed (under ≤) if k ∈K ′, k ≤ l⇒

l ∈ K ′. If K ′ is a closed subset of the underlying partially ordered set K of a
Kripke model K, then K ′ determines a Kripke model K′ over K ′ with D′(k)=
D(k) and k �′ϕ⇔ k �ϕ for k ∈K ′ and ϕ atomic. Show k �′ϕ⇔ k �ϕ for all
ϕ with parameters in D(k), for k ∈K ′ (i.e. it is the future that matters, not the
past).

14. Give a modified proof of the Model Existence Lemma by taking as nodes of
the partially ordered set prime theories that extend Γ and that have a language
with constants in some set C0∪C1∪· · ·∪Ck−1 (cf. the proof of Lemma 6.3.9).
Note that the resulting partially ordered set need not (and, as a matter of fact, is
not) a tree, so we lose something. However compare Exercise 16.

15. Consider a propositional Kripke model K, where the Σ function assigns only
subsets of a finite set Γ of the propositions, which is closed under subformu-
las. We may consider the sets of propositions forced at a node instead of the
node: define [k] = {ϕ ∈ Γ |k �ϕ}. The set {[k]|k ∈ K} is partially ordered by
inclusion. Define ΣΓ ([k]) :=Σ(k) ∩At , show that the conditions of a Kripke
model are satisfied; call this model KΓ , and denote the forcing by �Γ . We say
that KΓ is obtained by filtration from K.
(a) Show [k] �Γ ϕ⇔ k �ϕ, for ϕ ∈ Γ .
(b) Show that KΓ has an underlying finite partially ordered set.
(c) Show that � ϕ⇔ ϕ holds in all finite Kripke models.
(d) Show that intuitionistic propositional logic is decidable (i.e. there is a deci-

sion method for � ϕ), apply Lemma 4.3.17.
16. Each Kripke model with bottom node k0 can be turned into a model over a tree

as follows: Ktr consists of all finite increasing sequences 〈k0, k1, . . . , kn〉, ki <

ki+1(0 ≤ i < n), and Atr(〈k0, . . . , kn〉) := A(kn). Show 〈k0, . . . , kn〉, �trϕ ⇔
kn �ϕ, where �tr is the forcing relation in the tree model.

17. (a) Show that (ϕ→ψ)∨ (ψ → ϕ) holds in all linearly ordered Kripke models
for propositional logic.

(b) Show that LC �� σ ⇒ there is a linear Kripke model of LC in which σ fails,
where LC is the propositional theory axiomatized by the schema (ϕ →
ψ)∨ (ψ → ϕ). (Hint: apply Exercise 15.) Hence LC is complete for linear
Kripke models (Dummett).

18. Consider a Kripke model K for decidable equality (i.e. ∀xy(x = y ∨ x �= y)).
For each k the relation k �a = b is an equivalence relation. Define a new model
K′ with the same partially ordered set as K, and D′(k) = {[a]k|a ∈ D(k)},
where [a] is the equivalence class of a. Replace the inclusion of D(k) in D(l),
for k < l, by the corresponding canonical embedding [a]k %→ [a]l . Define for
atomic ϕ k �′ϕ := k �ϕ and show k �′ϕ⇔ k �ϕ for all ϕ.
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19. Prove DP for propositional logic directly by simplifying the proof of Theo-
rem 6.4.2.

20. Show that HA has DP and EP, the latter in the form: HA � ∃xϕ(x)⇒ HA �
ϕ(n) for some n ∈N . (Hint: show that the model constructed in Theorems 6.4.2
and 6.4.3 is a model of HA.)

21. Consider predicate logic in a language without function symbols and constants.
Show � ∃xϕ(x)⇒�∀xϕ(x), where FV(ϕ)⊆ {x}. (Hint: add an auxiliary con-
stant c, apply Theorem 6.4.3, and replace it by a suitable variable.)

22. Show ∀xy(x = y ∨ x �= y) �∧∧
AP, where AP consists of the three axioms of

the apartness relation, with x#y replaced by �=.
23. Show ∀xy(¬¬x = y→ x = y) �� ∀xy(x = y ∨ x �= y).
24. Show that k �ϕ ∨ ¬ϕ for maximal nodes k of a Kripke model, so Σ(k) =

Th(A(k)) (in the classical sense). That is, “the logic in maximal node is classi-
cal.”

25. Give an alternative proof of Glivenko’s theorem using Exercises 15 and 24.
26. Consider a Kripke model with two nodes k0, k1; k0 < k1 and A(k0) = R,

A(k1)=C. Show k0 ��¬∀x(x2 + 1 �= 0)→∃x(x2 + 1= 0).
27. Let D=R[X]/X2 be the ring of dual numbers. D has a unique maximal ideal,

generated by X. Consider a Kripke model with two nodes k0, k1; k0 < k1 and
A(k0) = D, A(k1) = R, with f : D→ R the canonical map f (a + bX) = a.
Show that the model is an intuitionistic field, define the apartness relation.

28. Show that ∀x(ϕ∨ψ(x))→ (ϕ∨∀xψ(x))(x �∈ FV(ϕ)) holds in all Kripke mod-
els with constant domain function (i.e. ∀kl(D(k)=D(l)).

29. This exercise will establish the undefinability of propositional connectives in
terms of other connectives. To be precise the connective �1 is not definable in
(or “by”) �2, . . . ,�n if there is no formula ϕ, containing only the connectives
�2, . . . ,�n and the atoms p0,p1, such that � p0�1p1 ↔ ϕ.

(i) ∨ is not definable in→,∧,⊥. Hint: suppose ϕ defines ∨, apply the Gödel
translation.

(ii) ∧ is not definable in →,∨,⊥. Consider the Kripke model with three
nodes k1, k2, k3 and k1 < k3, k2 < k3, k1 �p,k2 �q, k3 �p,q . Show that
all ∧-free formulas are either equivalent to ⊥ or are forced in k1 or k2.

(iii) → is not definable in ∧,∨,¬,⊥. Consider the Kripke model with three
nodes k1, k2, k3 and k1 < k3, k2 < k3, k1 �p,k3 �p,q . Show for all →-
free formulas k2 �ϕ⇒ k1 �ϕ.

30. In this exercise we now consider only propositions with a single atom p. De-
fine a sequence of formulas by ϕ0 :=⊥, ϕ1 := p,ϕ2 := ¬p,ϕ2n+3 := ϕ2n+1 ∨
ϕ2n+2, ϕ2n+4 := ϕ2n+2 → ϕ2n+1 and an extra formula ϕ∞ := �. There is a
specific set of implications among the ϕi , indicated in the diagram on the left.

(i) Show that the following implications hold:
� ϕ2n+1 → ϕ2n+3, � ϕ2n+1 → ϕ2n+4, � ϕ2n+2 → ϕ2n+3,

� ϕ0 → ϕn, � ϕn→ ϕ∞.
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(ii) Show that the following “identities” hold:
� (ϕ2n+1 → ϕ2n+2)↔ ϕ2n+2, � (ϕ2n+2 → ϕ2n+4)↔ ϕ2n+4,

� (ϕ2n+3 → ϕ2n+1)↔ ϕ2n+4, � (ϕ2n+4 → ϕ2n+1)↔ ϕ2n+6,

� (ϕ2n+5 → ϕ2n+1)↔ ϕ2n+1, � (ϕ2n+6 → ϕ2n+1)↔ ϕ2n+4,

� (ϕk → ϕ2n+1)↔ ϕ2n+1 for k ≥ 2n+ 7,

� (ϕk → ϕ2n+2)↔ ϕ2n+2 for k ≥ 2n+ 3.

Determine identities for the implications not covered above.
(iii) Determine all possible identities for conjunctions and disjunctions of ϕi ’s

(look at the diagram).
(iv) Show that each formula in p is equivalent to some ϕi .
(v) In order to show that there are no other implications than those indicated

in the diagram (and the compositions of course) it suffices to show that no
ϕn is derivable. Why?

(vi) Consider the Kripke model indicated in the diagram on the right.
a1 �p and no other node forces p. Show: ∀an∃ϕi∀k(k �ϕi ⇔ k ≥ an),
∀bn∃ϕj∀k(k �ϕj ⇔ k ≥ bn).

Clearly the ϕi(ϕj ) is uniquely determined, call it ϕ(an), resp. ϕ(bn).
Show ϕ(a1) = ϕ1, ϕ(b1) = ϕ2, ϕ(a2) = ϕ4, ϕ(b2) = ϕ6, ϕ(an+2) =
[(ϕ(an+1)∨ϕ(bn))→ (ϕ(an)∨ϕ(bn))]→ (ϕ(an+1)∨ϕ(bn)), ϕ(bn+2)=
[(ϕ(an+1)∨ ϕ(bn+1))→ (ϕ(an+1)∨ ϕ(bn))]→ (ϕ(an+1)∨ ϕ(bn+1)).

(vii) Show that the diagram on the left contains all provable implications.

Remark The diagram of the implications is called the Rieger-Nishimura lattice
(it actually is the free Heyting algebra with one generator).
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31. Consider intuitionistic predicate logic without function symbols. Prove the fol-
lowing extension of the existence property: � ∃yϕ(x1, . . . , xn, y) ⇔
� ϕ(x1, . . . , xn, t), where t is a constant or one of the variables x1, . . . , xn.
(Hint: replace x1, . . . , xn by new constants a1, . . . , an.)

32. Let Q1x1 . . .Qnxnϕ((x, (y) be a prenex formula (without function symbols), then
we can find a suitable substitution instance ϕ′ of ϕ obtained by replacing the
existentially quantified variables by certain universally quantified variables or
by constants, such that �Q1x1 . . .Qnxnϕ((x, (y)⇔� ϕ′ (use Exercise 31).

33. Show that � ϕ is decidable for prenex ϕ (use Lemma 4.3.17 and Exercise 32).
Remark. Combined with the fact that intuitionistic predicate logic is undecid-
able, this shows that not every formula is equivalent to one in prenex normal
form.

34. Consider a language with identity and function symbols, and interpret an n-
ary symbol F by a function Fk :D(k)n →D(k) for each k in a given Kripke
model K. We require monotonicity: k ≤ l ⇒ Fk ⊆ Fl , and preservation of
equality: (a ∼k

(b⇒ Fk((a)∼k Fk((b), where a ∼k b⇔ k �a = b.
(i) Show K �∀(x∃!y(F ((x)= y).

(ii) Show K �I4.
(iii) Let K �∀(x∃!yϕ((x, y), show that we can define for each k an Fk satisfying

the above requirements such that K �∀(xϕ((x,F ((x)).
(iv) Show that one can conservatively add definable Skolem functions.

Note that we have shown how to introduce functions in Kripke models, when
they are given by “functional” relations. So, strictly speaking, Kripke models
with just relations are good enough.

35. Γ is a prime theory in L. L(c) is obtained by adding a constant c. Γ (c) =
{ϕ|Γ � ϕ ∈ L(c)}. Show that Γ (c) is prime in L(c).



Chapter 7
Normalization

7.1 Cuts

Anyone with a reasonable experience in making natural deduction derivations ob-
serves that one somehow gets fairly efficient derivations. The worst that can happen
is that a number of steps end up with what was already derived or given, but then
one can obviously shorten the derivation. Here is an example:

[σ ∧ ϕ]2 ∧E
ϕ [ϕ→ψ]1 →E

ψ

[σ ∧ ϕ]2 ∧E
σ → I

ψ → σ →E
σ → I1

(ϕ→ψ)→ σ → I2
(σ ∧ ϕ)→ ((ϕ→ψ)→ σ)

σ occurs twice; the first time it is a premise for a → I , and the second time the
result of a →E. We can shorten the derivation as follows:

[σ ∧ ϕ]1 ∧E
σ → I

(ϕ→ψ)→ σ → I1
(σ ∧ ϕ)→ ((ϕ→ψ)→ σ)

It is apparently not a good idea to introduce something and to eliminate it right away.
This indeed is the key idea for simplifying derivations: avoid eliminations after in-
troductions. If a derivation contains an introduction followed by an elimination, then
one can, as a rule, easily shorten the derivation, the question is, can one get rid of
all those unfortunate steps? The answer is yes, but the proof is not trivial.

The topic of this chapter belongs to proof theory; the system of natural deduction
was introduced by Gentzen, who also showed that “detours” in derivations can be
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eliminated. The subject was revived again by Prawitz, who considerable extended
Gentzen’s techniques and results.

We will introduce a number of notions in order to facilitate the treatment.

Definition 7.1.1 The formulas directly above the line in a derivation rule are called
the premises, the formula directly below the line, the conclusion. In elimination
rules a premise not containing the connective is called a minor premise. All other
premises are called the major premises.

Convention The major premises will from now on appear on the left-hand side.

Definition 7.1.2 A formula occurrence γ is a cut in a derivation when it is the
conclusion of an introduction rule and the major premise of an elimination rule. γ is
called the cut formula of the cut.

In the above example ψ → σ is a cut formula.
We will adopt a slightly modified ∀I -rule, this will help to streamline the system.

∀I
ϕ ∀I∀x ϕ[x/y]

where y does not occur free in a hypothesis of the derivation of ϕ, and x is free for
y in ϕ.

The old version of ∀I is clearly a special case of the new rule. We will use the
familiar notation, e.g.

∀I ϕ(y) ∀I∀x ϕ(x)

Note that with the new rule we get a shorter derivation for

D

ϕ(x) ∀I∀xϕ(x) ∀E
ϕ(y) ∀I∀yϕ(y)

namely

D

ϕ(x) ∀I∀yϕ(y)

The adoption of the new rule is not necessary, but rather convenient.
We will first look at predicate calculus with ∧,→,⊥,∀.
Derivations will systematically be converted into simpler ones by “elimination

of cuts”; here is an example:

D

σ → I
ψ → σ

D′

ψ →E
σ

converts to
D

σ
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In general, when the tree under consideration is a subtree of a larger derivation the
whole subtree ending with σ is replaced by the second one. The rest of the derivation
remains unaltered. This is one of the features of natural deduction derivations: for
a formula σ in the derivation only the part above σ is relevant to σ . Therefore we
will only indicate conversions as far as required, but the reader will do well to keep
in mind that we make the replacement inside a given bigger derivation.

We list the possible conversions:

D1

ϕ1

D2

ϕ2 ∧I
ϕ1 ∧ ϕ2 ∧E

ϕi

is converted to
Di

ϕi

D1

ψ

[ψ]
D2

ϕ → I
ψ → ϕ →E

ϕ

is converted to

D1

ψ

D2

ϕ

D

ϕ ∀I∀xϕ[x/y] ∀E
ϕ[t/y]

is converted to
D[t/y]
ϕ[t/y]

It is not immediately clear that this conversion is a legitimate operation on
derivations. For example, consider the following derivation, where we assume that
z ∈ FV(ϕ(u, z)) and v /∈ FV(ϕ(u, z)). The elimination of the lower cut yields the
conversion.

D

ϕ(z, z)

∀xϕ(x, x)

ϕ(v, v)

=

∀uϕ(u, z)

ϕ(v, z)

∀vϕ(v, z)

ϕ(z, z) ∀I∀xϕ(x, x) ∀E
ϕ(v, v)

to

∀uϕ(u, v)

ϕ(v, v) ∀I∀vϕ(v, v)

ϕ(v, v)

=D[v/z]

The inadvertent substitution of v for z in D is questionable because v is not free
for z in the third line of the right-hand derivation and we see that in the resulting
derivation ∀I violates the condition on the variable involved in the ∀I application.
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Proper variable In order to avoid confusion of the above kind, we have to look a
bit closer at the way we handle our variables in derivations. There is, of course, the
obvious distinction between free and bound variables, but even the free variables do
not all play the same role. Some of them are “the variable” involved in a ∀I . We call
these occurrences proper variables and we extend the name to all occurrences that
are “related” to them. The notion “related” is the transitive closure of the relation
that two occurrences of the same variable have if one occurs in a conclusion and
the other in a premise of a rule in “related” formula occurrences. It is simplest to
define “related” as the reflexive, symmetric, transitive closure of the “direct relative”

relation which is given by checking all derivation rules, e.g. in ϕ(x)∧ψ(x, y)
ψ(x,y)

∧E

the top occurrence and bottom occurrence of ψ(x, y) are directly related, and so are
the corresponding occurrences of x and y. This applies similarly to the ϕ at the top
and the one at the bottom in

[ϕ]
D

ψ → I
ϕ→ψ

The details are left to the reader.
Dangerous clashes of variables can always be avoided, it just requires a routine

renaming of variables. Since these syntactic matters present notorious pitfalls, we
will exercise some care. Recall that we have shown earlier that bound variables may
be renamed while retaining logical equivalence. We will also use this expedient trick
in derivations.

Lemma 7.1.3 In a derivation the bound variables can be renamed so that no vari-
able occurs both free and bound.

Proof By induction on D. Actually it is better to do some “induction loading”, in
particular to prove that the bound variables can be chosen outside a given set of
variables (including the free variables under consideration). The proof is simple,
and hence left to the reader. �

Note that the formulation of the lemma is rather cryptic. We mean of course that
the resulting configuration is again a derivation.

It also expedient to rename some of the free variables in a derivation; in particular
we want to keep the proper and the non-proper free variables separated.

Lemma 7.1.4 In a derivation the free variables may be renamed, so that unrelated
proper variables are distinct and each one is used exactly once in its inference rule.
Moreover, no variable occurs as a proper and a non-proper variable.
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Proof Induction on D. Always choose a fresh variable for a proper variable. Note
that the renaming of the proper variables does not influence the hypotheses and the
conclusion. �

In practice it may be necessary to keep renaming variables in order to satisfy the
results of the preceding lemmas.

From now on we assume that our derivations satisfy the above condition, i.e.

(i) bound and free variables are distinct,
(ii) proper and non-proper variables are distinct and each proper variable is used in

precisely one ∀I .

Lemma 7.1.5 The conversions for→,∧,∀ yield derivations.

Proof The only difficult case is the ∀-conversion. But according to our variables
condition D[t/u] is a derivation when D is one, for the variables in t do not act as
proper variables in D. �

Exercise 7.1.6 Carry out suitable renamings in the derivation on the previous page
so that the conversion again yields a derivation.

Remark There is an alternative practice for formulating the rules of logic, which
is handy indeed for proof theoretical purposes: make a typographical distinction
between bound and free variables (a distinction in the alphabet). Free variables are
called parameters in that notation. We have seen that the same effect can be obtained
by the syntactical transformations described above. It is then necessary, of course,
to formulate the ∀-introduction in the liberal form!

7.2 Normalization for Classical Logic

Definition 7.2.1 A string of conversions is called a reduction sequence. A deriva-
tion D is called an irreducible derivation if there is no D′ such that D >1 D′.

Notation D >1 D′ stands for “D is converted to D′”. D > D′ stands for “there is
a finite sequence of conversions D = D0 >1 D1 >1 · · ·>1 Dn−1 =D and D ≥D′
stands for D > D′ or D =D′. (D reduces to D′.)

The basic question is of course “does every sequence of conversions terminate in
finitely many steps?”, or equivalently, “is > well-founded?” The answer turns out
to be yes, but we will first look at a simpler question: “does every derivation reduce
to an irreducible derivation?”

Definition 7.2.2 If there is no D′1 such that D1 >1 D′1 (i.e. if D1 does not contain
cuts), then we call D1 a normal derivation, or we say that D1 is in normal form, and
if D ≥D′ where D′ is normal, then we say that D normalizes to D′.
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We say that > has the strong normalization property if > is well-founded, i.e.
there are no infinite reduction sequences, and we say that it has the weak normal-
ization property if every derivation normalizes.

Popularly speaking, strong normalization tells you that no matter how you choose
your conversions, you will ultimately find a normal form; weak normalization tells
you that if you choose your conversions in a particular way, you will find a normal
form.

Before discussing the normalization proofs, we remark that the ⊥-rule can be
restricted to instances where the conclusion is atomic. This is achieved by lowering
the rank of the conclusion step by step.

Example

D

⊥
ϕ ∧ψ

is replaced by

D

⊥
ϕ

D

⊥
ψ ∧I

ϕ ∧ψ

D

⊥
ϕ→ψ

is replaced by

D

⊥
ψ → I

ϕ→ψ

etc.

(Note that in the right-hand derivation some hypothesis may be canceled, this is,
however, not necessary; if we want to get a derivation from the same hypotheses,
then it is wiser not to cancel the ϕ at that particular ∀I .) A similar fact holds for
RAA: it suffices to apply RAA to atomic instances. The proof is again a matter of
reducing the complexity of the relevant formula.

[¬(ϕ ∧ψ)]
D

⊥
ϕ ∧ψ

is replaced by

[¬ϕ]
[ϕ ∧ψ]

ϕ

⊥
¬(ϕ ∧ψ)

D

⊥
RAA

ϕ

[¬ψ]
[ϕ ∧ψ]

ψ

⊥
¬(ϕ ∧ψ)

D

⊥
RAA

ψ ∧I
ϕ ∧ψ
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[¬(ϕ→ψ)]
D

⊥
ϕ→ψ

is replaced by

[ϕ] [ϕ→ψ]
ψ [¬ψ]

⊥
¬(ϕ→ψ)

D

⊥
RAA

ψ

ϕ→ψ

[¬∀x ϕ(x)]
D

⊥
∀x ϕ(x)

is replaced by

[¬ϕ(x)]
[∀x ϕ(x)]

ϕ(x)

⊥
¬∀x ϕ(x)

D

⊥
RAA

ϕ(x)

∀x ϕ(x)

Some definitions are in order now.

Definition 7.2.3

(i) A maximal cut formula is a cut formula with maximal rank.
(ii) d =max{r(ϕ)|ϕ cut formula in D} (observe that max ∅ = 0).

n= number of maximal cut formulas and cr(D)= (d,n), the cut rank of D.

If D has no cuts, put cr(D) = (0,0). We will systematically lower the cut rank
of a derivation until all cuts have been eliminated. The ordering on cut ranks is
lexicographic:

(d,n) < (d ′, n′) := d < d ′ ∨ (d = d ′ ∧ n < n′).

Fact 7.2.4 < is a well-ordering (actually ω ·ω) and hence has no infinite descending
sequences.

Lemma 7.2.5 Let D be a derivation with a cut at the bottom, let this cut have rank
n while all other cuts have rank < n, then the conversion of D at this lowest cut
yields a derivation with only cuts of rank < n.
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Proof Consider all the possible cuts at the bottom and check the ranks of the cuts
after the conversion.

(i) →-cut

[ϕ]
D1

ψ

ϕ→ψ

D2

ϕ

ψ

=D. Then D >1 D′ =

D2

ϕ

D1

ψ

Observe that nothing in D1 and D2 was changed in the process of conversion,
so all the cuts in D′ have rank < n.

(ii) ∀-cut

D

ϕ(x)

∀y ϕ(y)

ϕ(t)

=D. Then D >1 D′ =
(
D
ϕ

)

[t/x]

The substitution of a term does not affect the cut rank of a derivation, so in D′
all cuts have rank < n.

(iii) ∧-cut. Similar. �

Observe that in the ∧,→,⊥,∀-language the reductions are fairly simple, i.e.
parts of derivations are replaced by parts of the old derivation (forgetting for a mo-
ment about the terms)—things get smaller!

Lemma 7.2.6 If cr(D) > (0,0), then there is a D′ with D >1 D′ and
cr(D′) < cr(D).

Proof Select a maximal cut formula in D such that all cuts above it have lower rank.
Apply the appropriate reduction to this maximal cut, then the part of the deriva-
tion D ending in the conclusion σ of the cut is replaced, by Lemma 7.2.5, by a
(sub)derivation in which all cut formulas have lower rank. If the maximal cut for-
mula was the only one, then d is lowered by 1, otherwise n is lowered by 1 and d

remains unchanged. In both cases cr(D) gets smaller. Note that in the first case n

may become much larger, but that does not matter in the lexicographic order.
Observe that the elimination of a cut (here!) is a local affair, i.e. it only affects

the part of the derivation tree above the conclusion of the cut.

Theorem 7.2.7 (Weak Normalization) All derivations normalize.

Proof By Lemma 7.2.6 the cut rank can be lowered to (0,0) in a finite number of
steps, hence the last derivation in the reduction sequence has no more cuts. �
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Normal derivations have a number of convenient properties, which can be read
off from their structure. In order to formulate these properties and the structure, we
introduce some more terminology.

Definition 7.2.8 (i) A path in a derivation is a sequence of formulas ϕ0, . . . , ϕn,
such that ϕ0 is a hypothesis, ϕn is the conclusion and ϕi is a premise immediately
above ϕi+1(0 ≤ i ≤ n − 1). (ii) A track is an initial part of a path which stops at
the first minor premise or at the conclusion. In other words, a track can only pass
through introduction rules and through major premises of elimination rules.

Example

[ϕ→ (ψ → σ)]
[ϕ ∧ψ]

ϕ

ψ → σ

[ϕ ∧ψ]
ψ

σ

ϕ ∧ψ → σ

ϕ→ (ψ → σ)→ (ϕ ∧ψ → σ)

The underlying tree is labeled with numbers:

and the tracks are (6,4,3,2,1), (9,7) and (8,5).

Fact 7.2.9 In a normal derivation no introduction rule (application) can precede
an elimination rule (application) in a track.

Proof Suppose an introduction rule precedes an elimination rule in a track, then
there is a last introduction rule that precedes the first elimination rule. Because the
derivation is normal, one cannot immediately precede the other. So there has to be a
rule in between, which must be the⊥-rule or the RAA, but that clearly is impossible,
since ⊥ cannot be the conclusion of an introduction rule. �
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Fact 7.2.10 A track in a normal derivation is divided into (at most) three parts: an
elimination part, followed by a ⊥-part, followed by an introduction part. Each of
the parts may be empty.

Proof By Fact 7.2.9 we know that if the first rule is an elimination, then all elimina-
tions come first. Look at the last elimination, it results (1) in the conclusion of D, or
(2) in⊥, in which case the⊥-rule or RAA may be applied, or (3) it is followed by an
introduction. In the last case only introductions can follow. If we applied the ⊥- or
RAA-rule, then an atom appears, which can only be the premise of an introduction
rule (or the conclusion of D). �

Fact 7.2.11 Let D be a normal derivation. Then D has at least one maximal track,
ending in the conclusion.

The underlying tree of a normal derivation looks like the following diagram:

The picture suggests that the tracks are classified as to “how far” they are from
the maximal track. We formalize this in the notion of order.

Definition 7.2.12 Let D be a normal derivation.

o(tm)= 0 for a maximal track tm.

o(t)= o(t ′)+ 1 if the end formula of track t is a minor premise

belonging to a major premise in t ′.

The orders of the various tracks are indicated in the picture.
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Theorem 7.2.13 (Subformula Property) Let D be a normal derivation of Γ � ϕ,
then each formula (occurrence) ψ of D is a subformula of ϕ or of a formula in
Γ , unless ψ is canceled by an application of RAA or when it is the ⊥ immediately
following such a canceled hypothesis.

Proof Consider a formula ψ in D; if it occurs in the elimination part of its track t ,
then it evidently is a subformula of the hypothesis at the top of t . If not, then it is a
subformula of the end formula ψ1 of t . Hence ψ1 is a subformula of a formula ψ2 of
a track t1 with o(t1) < o(t). Repeating the argument we find that ψ is a subformula
of a hypothesis or of the conclusion.

So far we have considered all hypotheses, but we can do better. If ϕ is a sub-
formula of a canceled hypothesis, it must be a subformula of the resulting implica-
tional formula in case of an → I application, or of the resulting formula in case of
an RAA-application, or (and these are the only exceptions) it is itself canceled by
an RAA-application or it is a ⊥ immediately following such a hypothesis. �

One can draw some immediate corollaries from our results so far.

Corollary 7.2.14 Predicate logic is consistent.

Proof Suppose �⊥, then there is a normal derivation ending in ⊥ with all hypothe-
ses canceled. There is a track through the conclusion; in this track there are no
introduction rules, so the top (hypothesis) is not canceled. Contradiction. �

Note that Corollary 7.2.14 does not come as a surprise. We already knew that
predicate logic is consistent on the basis of the Soundness Theorem. The nice point
of the above proof is that it uses only syntactical arguments.

Corollary 7.2.15 Predicate logic is conservative over propositional logic.

Proof Let D be a normal derivation of Γ � ϕ, where Γ and ϕ contain no quantifiers;
then by the subformula property D contains only quantifier-free formulas, hence D
is a derivation in propositional logic. �

7.3 Normalization for Intuitionistic Logic

When we consider the full language, including ∨ and ∃, some of the notions intro-
duced above have to be reconsidered. We briefly mention them:

• In the ∃E
∃x ϕ(x)

ϕ(u)

D

σ

σ

u is called the proper variable.
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• The lemmas on bound variables, proper variables and free variables remain cor-
rect.

• Cuts and cut formulas are more complicated, they will be dealt with below.

As before we assume that our derivations satisfy the conditions on free and bound
variables and on proper variables.

Intuitionistic logic adds certain complications to the technique developed above.
We can still define all conversions:

∨-conversion

D

ϕi ∨I
ϕ1 ∨ ϕ2

[ϕ1]
D1

σ

[ϕ2]
D2

σ ∨E
σ

converts to

Di

ϕi

D1

σ

∃-conversion

D

ϕ(t)

∃x ϕ(x)

ϕ(y)

D′

σ

σ

converts to

D

ϕ(t)

D′[t/y]
σ

Lemma 7.3.1 For any derivation
ϕ(y)

D′
σ

with y not free in σ and t free for y in ϕ(y),

ϕ(t)

D′[t/y]
σ

is also a derivation.

Proof Induction on D′. �

It becomes somewhat harder to define tracks; recall that tracks were introduced
in order to formalize something like “essential successor”. In ϕ→ψ ϕ

ψ
we did not

consider ϕ to be an “essential successor” of ϕ (the minor premise) since ψ has
nothing to do with ϕ.

In ∨E and ∃E the canceled hypotheses have something to do with the major
premise, so we deviate from the geometric idea of going down in the tree and we
make a track that ends in ϕ ∨ ψ both continuing through (the canceled) ϕ and ψ ;
similarly a track that gets to ∃xϕ(x) continues through (the canceled) ϕ(y).

The old clauses are still observed, except that tracks are not allowed to start at
hypotheses, canceled by ∨E or ∃E. Moreover, a track (naturally) ends in a major
premise of ∨E or ∃E if no hypotheses are canceled in these rule applications.
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Example

[∃x(ϕ(x)∨ψ(x))]
[ϕ(y)∨ψ(y)]

[ϕ(y)]
∃xϕ(x)

∃xϕ(x)∨ ∃xψ(x)

[ψ(y)]
∃xψ(x)

∃xϕ(x)∨ ∃xψ(x)

∃xϕ(x)∨ ∃xψ(x)
∃E

∃xϕ(x)∨ ∃xψ(x)

∃x(ϕ(x)∨ψ(x))→∃xϕ(x)∨ ∃xψ(x)

In tree form:

The derivation contains the following tracks:

(2,4,9,7,5,3,1), (2,4,10,8,6,3,1).

There are still more problems to be faced in the intuitionistic case.

(i) There may be superfluous applications of ∨E and ∃E in the sense that “nothing
is canceled”.

That is, in

D

∃xϕ(x)

D′

σ

σ

no hypotheses ϕ(y) are canceled in D′.

We add extra conversions to get rid of those elimination rule applications:

D

ϕ ∨ψ

D1

σ

D2

σ

σ

converts to
Di

σ

if ϕ and ψ are not canceled in resp. D1,D2.

D

∃xϕ(x)

D′

σ

σ

converts to
D′

σ

if ϕ(y) is not canceled in D′.
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(ii) An introduction may be followed by an elimination in a track without giving
rise to a conversion.

Example

ϕ ∨ ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ ∨E

ϕ ∧ ϕ ∧E
ϕ

In each track there is an ∧-introduction and two steps later an ∧-elimination, but
we are not in a position to apply a reduction.

We would still not be willing to accept this derivation as “normal”, if only be-
cause nothing is left of the subformula property: ϕ ∧ϕ is neither a subformula of its
predecessor in the track, nor of its predecessor. The problem is caused by the repeti-
tions that may occur because of ∨E and ∃E, e.g. one may get a string of occurrences
of the same formula:

∃xnϕn(xn)

∃x3ϕ3(x3)

∃x2ϕ2(x2)

∃x1ϕ1(x1)

D1

σ

σ

σ

σ

. . .

σ

σ

Clearly the formulas that would have to interact in a reduction may be too far
apart. The solution is to change the order of the rule applications; we call this a
permutation conversion.

Our example is converted by “pulling” the ∧E upwards:

ϕ ∨ ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ ∧E

ϕ

[ϕ] [ϕ] ∧I
ϕ ∧ ϕ ∧E

ϕ ∨E
ϕ

Now we can apply the ∧-conversion:

ϕ ∨ ϕ [ϕ] [ϕ] ∨E
ϕ

In view of the extra complications we have to extend our notion of cut.
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Definition 7.3.2 A string of occurrences of a formula σ in a track which starts with
the result of an introduction and ends with an elimination is called a cut segment.
A maximal cut segment is one with a cut formula of maximal rank.

We have seen that the elimination at the bottom of the cut segment can be per-
muted upwards:

Example

∃yϕ2(y)

∃xϕ1(x)

[ψ]
D

σ

ψ → σ

ψ → σ

ψ → σ ψ

σ

converts to

∃yϕ2(y)

∃xϕ1(x)

[ψ]
D

σ

ψ → σ

ψ → σ ψ

σ

σ

and then to

∃yϕ2(y)

∃xϕ1(x)

[ψ]
D

σ

ψ → σ ψ

σ

σ

σ

Now we can eliminate the cut formula ψ → σ :

∃yϕ2(y)

∃xϕ1(x)

ψ

D

σ

σ

σ

So a cut segment may be eliminated by applying a series of permutation conversions
followed by a “connective conversion”.

As in the smaller language, we can restrict our attention to applications of the
⊥-rule for atomic instances.
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We just have to consider the extra connectives:

D

⊥
ϕ ∨ψ

can be replaced by

D

⊥
ϕ

ϕ ∨ψ

D

⊥
∃xϕ(x)

can be replaced by

D

⊥
ϕ(y)

∃xϕ(x)

We will show that in intuitionistic logic derivations can be normalized.
We define the cut rank as before, but now for cut segments.

Definition 7.3.3 (i) The rank of a cut segment is the rank of its formula.
(ii) d = max{r(ϕ)|ϕ cut formula in D}, n = number of maximal cut segments,

cr(D)= (d,n) with the same lexicographical ordering.

Lemma 7.3.4 If D is a derivation ending with a cut segment of maximal rank such
that all cut segments distinct from this segment have a smaller rank, then a number
of permutation conversions and a conversion reduce D to a derivation with smaller
cut rank.

Proof (i) Carry out the permutation conversions on a maximal segment, so that an
elimination immediately follows an introduction. For example,

· · ·
· · ·

· · ·
ϕ ψ

ϕ ∧ψ

ϕ ∧ψ

ϕ ∧ψ

ϕ ∧ψ

ϕ

>

· · ·
· · ·

· · ·

ϕ ψ

ϕ ∧ψ

ϕ

ϕ

ϕ

ϕ

Observe that the cut rank is not raised. We now apply the “connective” conversion
to the remaining cut. The result is a derivation with a lower d . �

Lemma 7.3.5 If cr(D) > (0,0), then there is a D′ such that D > D′ and cr(D′) <

cr(D).

Proof Let s be a maximal segment such that in the subderivation D̂ ending with s no
other maximal segments occur. Apply the reduction steps indicated in Lemma 7.3.4;
then D is replaced by D′ and either the d is not lowered, but n is lowered, or d is
lowered. In both cases cr(D′) < cr(D). �
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Theorem 7.3.6 (Weak Normalization) Each intuitionistic derivation normalizes.

Proof Apply Lemma 7.3.5. �

Observe that the derivation may grow in size during the reductions, e.g.

ϕ ∨ ϕ

[ϕ]1
ϕ ∨ψ

[ϕ]1
ϕ ∨ψ

1
ϕ ∨ψ

ϕ→ σ [ϕ]2
σ

ψ → σ [ψ]2
σ

2
σ

is reduced by a permutation conversion to

ϕ ∨ ϕ

[ϕ]1
ϕ ∨ψ

[ϕ]2 ϕ→ σ

σ

[ψ]2 ψ → σ

σ
2

σ D
1

σ

where

D =

[ϕ]1
ϕ ∨ψ

[ϕ]3 ϕ→ σ

σ

[ψ]3 ψ → σ

σ
3

σ

In general, parts of derivations may be duplicated.
The structure theorem for normal derivations holds for intuitionistic logic as well;

note that we have to use the extended notion of track and that segments may occur.

Fact 7.3.7 (i) In a normal derivation, no application of an introduction rule can
precede an application of an elimination rule.

(ii) A track in a normal derivation is divided into (at most) three parts: an elim-
ination part, followed by a ⊥ part, followed by an introduction part. These parts
contain segments, the last formula of which is resp. the major premise of an elimi-
nation rule, the falsum rule or (an introduction rule or the conclusion).

(iii) In a normal derivation the conclusion is in at least one maximal track.

Theorem 7.3.8 (Subformula Property) In a normal derivation of Γ � ϕ, each for-
mula is a subformula of a hypothesis in Γ , or of ϕ.

Proof Left to the reader. �

Definition 7.3.9 The relation “ϕ is a strictly positive subformula occurrence of ψ”
is inductively defined by:
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(1) ϕ is a strictly positive subformula occurrence of ϕ,
(2) ψ is a strictly positive subformula occurrence of ϕ ∧ψ , ψ ∧ ϕ, ϕ ∨ψ , ψ ∨ ϕ,

ϕ→ψ ,
(3) ψ is a strictly positive subformula occurrence of ∀xψ,∃xψ .

Note that here we consider occurrences; as a rule this will be tacitly understood.
We will also say, for short, ϕ is strictly positive in ψ , or ϕ occurs strictly positive
in ψ . The extension to connectives and terms is obvious, e.g. “∀ is strictly positive
in ψ”.

Lemma 7.3.10 (i) The immediate successor of the major premise of an elimina-
tion rule is strictly positive in this premise (for → E,∧E,∀E this actually is the
conclusion).

(ii) A strictly positive part of a strictly positive part of ϕ is a strictly positive part
of ϕ.

Proof Immediate. �

We now give some applications of the Normal Form Theorem.

Theorem 7.3.11 Let Γ � ϕ ∨ ψ , where Γ does not contain ∨ in strictly positive
subformulas, then Γ � ϕ or Γ �ψ .

Proof Consider a normal derivation D of ϕ ∨ ψ and a maximal track t . If the first
occurrence ϕ ∨ ψ of its segment belongs to the elimination part of t , then ϕ ∨
ψ is a strictly positive part of the hypothesis in t , which has not been canceled.
Contradiction.

Hence ϕ ∨ ψ belongs to the introduction part of t , and thus D contains a sub-
derivation of ϕ or of ψ .

D looks like

Dk

Dk−1

Dk−2

D1

D′

ϕ

ϕ ∨ψ · · ·
. . . · · ·

ϕ ∨ψ · · ·
ϕ ∨ψ · · ·

ϕ ∨ψ

The last k steps are ∃E or ∨E. If any of them were an ∨-elimination then the
disjunction would be in the elimination part of a track and hence a ∨ would occur
strictly positive in some hypothesis of Γ . Contradiction.



7.3 Normalization for Intuitionistic Logic 205

Hence all the eliminations are ∃E. Replace the derivation now by:

Dk

D2

D1

D′

ϕ

ϕ

ϕ

. . .

ϕ

ϕ

In this derivation exactly the same hypotheses have been canceled, so Γ � ϕ. �

Consider a language without function symbols (i.e. all terms are variables or
constants).

Theorem 7.3.12 If Γ � ∃xϕ(x), where Γ does not contain an existential formula
as a strictly positive part, then Γ � ϕ(t1) ∨ · · · ∨ ϕ(tn), where the terms t1, . . . , tn

occur in the hypotheses or in the conclusion.

Proof Consider an end segment of a normal derivation D of ∃xϕ(x) from Γ . End
segments run through minor premises of ∨E and ∃E. In this case an end segment
cannot result from ∃E, since then some ∃uϕ(u) would occur strictly positive in Γ .
Hence the segment runs through minor premises of ∨E’s. That is, we get:

α2 ∨ β2

α1 ∨ β1

[α1]
D1

∃xϕ(x)

[β1]
D2

∃xϕ(x)

∃xϕ(x)

...

∃xϕ(x)

∃xϕ(x)

. . .

∃xϕ(x)

∃xϕ(x) at the beginning of an end segment results from an introduction (else it
would occur strictly positive in Γ ), say from ϕ(ti). It could also result from a ⊥
rule, but then we could conclude a suitable instance of ϕ(x).
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We now replace the parts of D yielding the tops of the end segments by parts
yielding disjunctions:

α2 ∨ β2

α1 ∨ β1

[α1]
D1

ϕ(t1)

ϕ(t1)∨ ϕ(t2)

[β1]
D2

ϕ(t2)

ϕ(t1)∨ ϕ(t2)

ϕ(t1)∨ ϕ(t2)

...

ϕ(t3)

. . .

ϕ(t1)∨ ϕ(t2)∨ . . .∨ ϕ(tn)

So Γ �∨∨
ϕ(ti) . Since the derivation was normal the various ti ’s are subterms

of Γ or ∃xϕ(x). �

Corollary 7.3.13 If in addition ∨ does not occur strictly positive in Γ , then Γ �
ϕ(t) for a suitable t .

Corollary 7.3.14 If the language does not contain constants, then we get Γ �
∀xϕ(x).

We have obtained here constructive proofs of the disjunction and existence prop-
erties, which had already been proved by classical means in Chap. 6.

Exercises

1. Show that there is no formula ϕ with atoms p and q without ∨ so that � ϕ ↔
p ∨ q (hence ∨ is not definable from the remaining connectives).

2. If ϕ does not contain → then ��i ϕ. Use this to show that → is not definable by
the remaining connectives.

3. If ∧ does not occur in ϕ and p and q are distinct atoms, then ϕ � p and ϕ � q

⇒ ϕ �⊥.
4. Eliminate the cut segment (σ ∨ τ) from

D1

∃yϕ1(y)

D2

∃xϕ2(x)

D3

σ

σ ∨ τ

σ ∨ τ

σ ∨ τ

[σ ]
D4

ρ

[τ ]
D5

ρ

ρ

5. Show that a prenex formula (Q1x1) · · · (Qnxn)ϕ is derivable if and only if a suit-
able quantifier-free formula, obtained from ϕ, is derivable. This, in combination
with Exercise 15 of Chap. 6, yields another proof of Exercise 33 of Chap. 6.
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7.4 Additional Remarks: Strong Normalization and
the Church–Rosser Property

As we have already mentioned, there is a stronger result for natural deduction: ev-
ery reduction sequence terminates (i.e. <1 is well-founded). For proofs see Girard
(1987) and Girard et al. (1989). Indeed, one can also show for > the Church–Rosser
property (or confluence property): if D ≥ D1,D ≥ D2 then there is a D3 such that
D1 ≥ D3 and D2 ≥ D3. As a consequence each D has a unique normal form. One
easily shows, however, that a given ϕ may have more than one normal derivation.

Normalization is an integral part of proof theory; a full treatment is definitely be-
yond this exposition. In particular we have suppressed the technicalities inherent to
the reduction process, the reader may consult the treatment in Prawitz (1965), Troel-
stra and Schwichtenberg (1996), Troelstra and van Dalen (1988), and Schwichten-
berg and Wainer (2012).



Chapter 8
Gödel’s Theorem

8.1 Primitive Recursive Functions

We will introduce a class of numerical functions which evidently are effectively
computable. The procedure may seem rather ad hoc, but it gives us a surprisingly
rich class of algorithms. We use the inductive method, that is, we fix a number of
initial functions which are as effective as one can wish; after that we specify certain
ways to manufacture new algorithms out of old ones.

The initial algorithms are extremely simple indeed: the successor function, the
constant functions and the projection functions. It is obvious that composition (or
substitution) of algorithms yields algorithms. The use of recursion was as a device
to obtain new functions already known to Dedekind; that recursion produces al-
gorithms from given algorithms is also easily seen. In logic the study of primitive
recursive functions was initiated by Skolem, Herbrand, Gödel and others.

We will now proceed with a precise definition, which will be given in the form of
an inductive definition. First we present a list of initial functions of an unmistakably
algorithmic nature, and then we specify how to get new algorithms from old ones.
All functions have their own arity, that is to say, they map N

k to N for a suitable k.
We will in general not specify the arities of the functions involved, and assume that
they are chosen correctly.

The so-called initial functions are

• the constant functions Ck
m with Ck

m(n0, . . . , nk−1)=m,
• the successor function S with S(n)= n+ 1,
• the projection functions P k

i with P k
i (n0, . . . , nk−1)= ni (i < k).

New algorithms are obtained from old ones by substitution or composition and prim-
itive recursion.

• A class F of functions is closed under substitution if g,h0, . . . , hp−1 ∈ F ⇒
f ∈F , where f ((n)= g(h0((n), . . . , hp−1((n)).

• F is closed under primitive recursion if g,h ∈F⇒ f ∈F , where
{

f (0, (n)= g((n)

f (m+ 1, (n)= h(f (m, (n), (n,m).

D. van Dalen, Logic and Structure, Universitext, DOI 10.1007/978-1-4471-4558-5_8,
© Springer-Verlag London 2013
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Definition 8.1.1 The class of primitive recursive functions is the smallest class of
functions containing the constant functions, the successor function, and the projec-
tion functions, which is closed under substitution and primitive recursion.

Remark Substitution has been defined in a particular way: the functions that are sub-
stituted all have the same string of inputs. In order to make arbitrary substitutions
one has to do a little bit of extra work. Consider for example the function f (x, y)

in which we want to substitute g(z) for x and f (z, x) for y: f (g(z), f (z, x)).
This is accomplished as follows: put h0(x, z) = g(z) = g(P 2

1 (x, z)) and h(x, z) =
f (z, x)= f (P 2

1 (x, z),P 2
0 (x, z)). Then the required f (g(z), f (z, x)) is obtained as

f (h0(x, z), h1(x, z)). The reader is expected to handle cases of substitution that will
come up.

Let us start by building up a stock of primitive recursive functions. The technique
is not difficult at all; most readers will have used it on numerous occasions. The
surprising fact is that so many functions can be obtained by these simple procedures.
Here is a first example:

x + y, defined by
{

x + 0= x

x + (y + 1)= (x + y)+ 1.

We will reformulate this definition so that the reader can see that it indeed fits the
prescribed format:

{+(0, x)= P 1
0 (x)

+(y + 1, x)= S(P 3
0 (+(y, x),P 2

0 (x, y),P 2
1 (x, y))).

As a rule we will we stick to traditional notation, so we will simply write x + y

for +(y, x). We will also tacitly use the traditional abbreviations from mathematics,
e.g. we will mostly drop the multiplication dot.

There are two convenient tricks to add or delete variables. The first one is the
introduction of dummy variables.

Lemma 8.1.2 (Dummy Variables) If f is primitive recursive, then so is g with
g(x0, . . . , xn−1, z0, . . . , zm−1)= f (x0, . . . , xn−1).

Proof Put g(x0, . . . , xn−1, z0, . . . , zm−1)= f (P n+m
0 ((x, (z), . . . ,P n+m

n ((x, (z)). �

Lemma 8.1.3 (Identification of Variables) If f is primitive recursive, then so is
f (x0, . . . , xn−1)[xi/xj ], where i, j ≤ n.

Proof We need only consider the case i �= j . f (x0, . . . , xn−1)[xi/xj ] = f (P n
0 (x0,

. . . , xn−1), . . . ,P
n
i (x0, . . . , xn−1), . . . ,P

n
i (x0, . . . , xn−1), . . . ,P

n
n−1(x0, . . . , xn−1)),

where the second P n
i is at the j th entry. �

A more pedestrian notation is f (x0, . . . , xi, . . . , xi, . . . , xn−1).
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Lemma 8.1.4 (Permutation of Variables) If f is primitive recursive, then so is g

with g(x0, . . . , xn−1)= f (x0, . . . , xn−1)[xi, xj /xj , xi], where i, j ≤ n.

Proof Use substitution and projection functions. �

From now on we will use the traditional informal notation, e.g. g(x) =
f (x, x, x), or g(x, y)= f (y, x). For convenience we have used and will use, when
no confusion can arise, the vector notation for strings of inputs.

The reader can easily verify that the following examples can be cast in the re-
quired format of the primitive recursive functions.

1. x + y
{

x + 0= x

x + (y + 1)= (x + y)+ 1

2. x · y
{

x · 0= 0
x · (y + 1)= x · y + x (we use (1))

3. xy

{
x0 = 1
xy+1 = xy · x

4. Predecessor function

p(x)=
{

x − 1 if x > 0
0 if x = 0

Apply recursion:
{

p(0)= 0
p(x + 1)= x

5. Cut-off subtraction (monus)

x
.− y =

{
x − y if x ≥ y

0 else

Apply recursion:
{

x
.− 0= x

x
.− (y + 1)= p(x

.− y)

6. Factorial function

n! = 1 · 2 · 3 · · · (n− 1) · n
7. Signum function

sg(x)=
{

0 if x = 0
1 otherwise
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Apply recursion:
{

sg(0)= 0
sg(x + 1)= 1

8. sg(x)= 1 .− sg(x).

sg(x)=
{

1 if x = 0
0 otherwise

9. |x − y|.
Observe that |x − y| = (x

.− y)+ (y
.− x)

10. f ((x, y)=∑y

i=0 g((x, i), where g is primitive recursive.
{∑0

i=0 g((x, i)= g((x,0)
∑y+1

i=0 g((x, i)=∑y

i=0 g((x, i)+ g((x, y + 1)

11.
∏y

i=0 g((x, i), idem.
12. If f is primitive recursive and π is a permutation of the set {0, . . . , n− 1}, then

g with g((x)= f (xπ0, . . . , xπ(n−1)) is also primitive recursive.
13. If f ((x, y) is primitive recursive, so is f ((x, k).

The definition of primitive recursive functions by direct means is a worthwhile
challenge, and the reader will find interesting cases among the exercises. For an
efficient and quick access to a large stock of primitive recursive functions there are,
however, techniques that cut a number of corners. We will present them here.

In the first place we can relate sets and functions by means of characteristic func-
tions. In the setting of number theoretic functions, we define characteristic functions
as follows: for A⊆N

k the characteristic function KA :Nk →{0,1} of A is given by
(n ∈ A⇔KA((n)= 1 (and hence (n �∈ A⇔KA((n)= 0). Warning: in logic the char-
acteristic function is sometimes defined with 0 and 1 interchanged. For the theory
that does not make any difference. Note that a subset of Nk is also called a k-ary
relation. When dealing with relations we tacitly assume that we have the correct
number of arguments, e.g. when we write A ∩ B we suppose that A,B are subsets
of the same N

k .

Definition 8.1.5 A relation R is primitive recursive if its characteristic function is
so.

Note that this corresponds to the idea of using KR as a test for membership.
The following sets (relations) are primitive recursive:

1. ∅: K∅(n)= 0 for all n.
2. The set of even numbers, E:

{
KE(0)= 1
KE(x + 1)= sg(KE(x))

3. The equality relation: K=(x, y)= sg(|x − y|)
4. The order relation: K<(x, y)= sg((x + 1)

.− y).
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Lemma 8.1.6 The primitive recursive relations are closed under ∪,∩, c and
bounded quantification.

Proof Let C = A ∩ B , then x ∈ C ⇔ x ∈ A ∧ x ∈ B , so KC(x) = 1⇔ KA(x) =
1 ∧ KB(x) = 1. Therefore we put KC(x) = KA(x) · KB(x). Hence the intersec-
tion of primitive recursive sets is primitive recursive. For union take KA∪B(x) =
sg(KA(x)+KB(x)), and for the complement KAC (x)= sg(KA(x)).

We say that R is obtained by bounded quantification from S if R((n,m) :=Qx ≤
mS((n,x), where Q is one of the quantifiers ∀,∃.

Consider the bounded existential quantification: R((x,n) := ∃y ≤ nS((x, y), then
KR((x,n)= sg(

∑
y≤n KS((x, y)), so if S is primitive recursive, then R is so.

The ∀ case is similar; it is left to the reader. �

Lemma 8.1.7 The primitive recursive relations are closed under primitive recursive
substitutions, i.e. if f0, . . . , fn−1 and R are primitive recursive, then so is S((x) :=
R(f0((x), . . . , fn−1((x)).

Proof KS((x)=KR(f1((x), . . . , fn−1((x)). �

Lemma 8.1.8 (Definition by Cases) Let R1, . . . ,Rp be mutually exclusive primitive
recursive predicates, such that ∀(x(R1((x)∨R2((x)∨ · · · ∨Rp((x)) and let g1, . . . , gp

be primitive recursive functions, then f with

f ((x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1((x) if R1((x)

g2((x) if R2((x)
...

gp((x) if Rp((x)

is primitive recursive.

Proof If KRi
((x) = 1, then all the other characteristic functions yield 0, so we put

f ((x)= g1((x) ·KR1((x)+ · · · + gp((x) ·KRp((x). �

The natural numbers are well-ordered, that is, each non-empty subset has a least
element. If we can test the subset for membership, then we can always find this least
element effectively. This is made precise for primitive recursive sets.

Some notation—the minimization operator μ is defined as follows: (μy)R((x, y)

is the least number y such that R((x, y) if there is one. Bounded minimization is
given by: (μy < m)R((x, y) is the least number y < m such that R((x, y) if such a
number exists; if not, we simply take it to be m.

Lemma 8.1.9 (Bounded Minimization) R is primitive recursive ⇒ (μy < m)

R((x, y) is primitive recursive.
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Proof Consider the following table:

R R((x,0) R((x,1) . . . R((xi), R((x, i + 1) . . . R((x,m)

KR 0 0 . . . 1 0 . . . 1
g 0 0 . . . 1 1 . . . 1
h 1 1 . . . 0 0 . . . 0
f 1 2 . . . i i . . . i

In the first line we write the values of KR((x, i) for 0 ≤ i ≤ m, in the sec-
ond line we make the sequence monotone, e.g. take g((x, i) = sg

∑i
j=0 KR((x, j).

Next we switch 0 and 1: h((x, i)=sgg((x, i) and finally we sum the h : f ((x, i) =
∑i

j=0 h((x, j). If R((x, j) holds for the first time in i, then f ((x,m− 1)= i, and if
R((x, j) does not hold for any j < m, then f ((x,m− 1)=m.

So (μy < m)R((x, y) = f ((x,m − 1), and thus bounded minimization yields a
primitive recursive function. �

We put (μy ≤m)R((x, y) := (μy < m+ 1)R((x, y).
Now it is time to apply our arsenal of techniques to obtain a large variety of

primitive recursive relations and functions.

Theorem 8.1.10 The following are primitive recursive.

1. The set of primes:

Prime(x)⇔x is a prime⇔x �= 1∧ ∀yz≤ x(x = yz→ y = 1∨ z= 1).

2. The divisibility relation:

x | y⇔∃z≤ y(x · z= y)

3. The exponent of the prime p in the factorization of x:

(μy ≤ x)[py | x ∧¬ py+1 | x]
4. The “nth prime” function:

{
p(0)= 2
p(n+ 1)= (μx ≤ p(n)n+2)(x is prime∧ x > p(n)).

Note that we start to count the prime numbers from zero, and we use the notation
pn = p(n). So p0 = 2, p1 = 3, p2 = 5, . . . . The first prime is p0, and the ith prime
is pi−1.

Proof One easily checks that the defining predicates are primitive recursive by ap-
plying the above lemmas. �
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Coding of Finite Sequences One of the interesting features of the natural number
system is that it allows a fairly simple coding of pairs of numbers, triples, . . . , and
n-tuples in general. There are quite a number of these codings, each having its own
strong points. The two best known ones are those of Cantor and of Gödel. Cantor’s
coding is given in Exercise 6, Gödel’s coding will be used here. It is based on the
well-known fact that numbers have a unique (up to order) prime factorization.

The idea is to associate to a sequence (n0, . . . , nk−1) the number 2n0+1 · 3n1+1 ·
· · · ·pni+1

i · · · · ·pnk−1+1
k−1 . The extra+1 in the exponents is used to take into account

that the coding has to show the zeros that occur in a sequence. From the prime fac-
torization of a coded sequence we can effectively extract the original sequence. The
way we have introduced these codes makes the coding unfortunately not a bijec-
tion; for example, 10 is not a coded sequence, whereas 6 is. This is not a terrible
drawback; there are remedies, which we will not consider here.

Recall that, in the framework of set theory a sequence of length n is a mapping
from {0, . . . , n− 1} to N, so we define the empty sequence as the unique sequence
of length 0, i.e. the unique map from ∅ to N, which is the empty function (i.e. set).
We put the code of the empty sequence 1.

Definition 8.1.11

1. Seq(n) := ∀p,q ≤ n(Prime(p) ∧ Prime(q) ∧ q < p ∧ p | n→ q | n) ∧ n �= 0
(sequence number)
In words: n is a sequence number if it is a product of consecutive positive prime
powers.

2. lth(n) := (μx ≤ n+ 1)[¬ px | n] (length)
3. (n)i = (μx < n)[px

i | n∧¬ px+1
i | n] .− 1 (decoding or projection)

In words: the exponent of the ith prime in the factorization of n, minus 1. (n)i ex-
tracts the ith element of the sequence.

4. n ∗m= n ·∏lth(m)−1
i=0 p

(m)i+1
lth(n)+i (concatenation)

In words: if m,n are codes of two sequences (m, (n, then the code of the concate-
nation of (m and (n is obtained by the product of n and the prime powers that one
gets by “moving up” all primes in the factorization of m by the length of n.

Remark 1 is trivially a sequence number. The length function only yields the cor-
rect output for sequence numbers, e.g. lth(10) = 1. Furthermore the length of 1 is
indeed 0, and the length of a 1-tuple is 1.

Notation We will use abbreviations for the iterated decoding functions:
(n)i,j = ((n)i)j , etc.

Sequence numbers are from now on written as 〈n0, . . . , nk−1〉. So, for example,
〈5,0〉 = 26 · 31. We write 〈 〉 for the code of the empty sequence. The binary coding,
〈x, y〉, is usually called a pairing function.
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So far we have used a straightforward form of recursion, each next output de-
pends on the parameters and on the previous output. But the Fibonacci sequence
shows us that there are more forms of recursion that occur in practice:

⎧
⎨

⎩

F(0)= 1
F(1)= 1
F(n+ 2)= F(n)+ F(n+ 1).

The obvious generalization is a function, where each output depends on the param-
eters and all the preceding outputs. This is called course-of-value recursion.

Definition 8.1.12 For a given function f (y, (x) its “course-of-value” function
f̄ (y, (x) is given by

{
f̄ (0, (x)= 1

f̄ (y + 1, (x)= f̄ (y · (x) · pf (y,(x)+1
y .

Example If f (0) = 1, f (1) = 0, f (2) = 7, then f̄ (0) = 1, f̄ (1) = 21+1, f̄ (2) =
21+1 · 31, f̄ (3)= 22 · 3 · 58 = 〈1,0,7〉.

Lemma 8.1.13 If f is primitive recursive, then so is f̄ .

Proof Obvious. �

Since f̄ (n+ 1) “codes” so to speak all information on f up to the nth value, we
can use f̄ to formulate course-of-value recursion.

Theorem 8.1.14 If g is primitive recursive and f (y, (x)= g(f̄ (y, (x), y, (x), then f

is primitive recursive.

Proof We first define f̄ .
{

f̄ (0, (x)= 1
f̄ (y + 1, (x)= f̄ (y, (x) ∗ 〈g(f̄ (y, (x), y, (x)〉.

f̄ is obviously primitive recursive. Since f (y, (x)= (f̄ (y + 1, (x))y we see that f is
primitive recursive. �

By now we have collected enough facts for future use about the primitive recur-
sive functions. We might ask if there are more algorithms than just the primitive
recursive functions. The answer turns out to be yes. Consider the following con-
struction: each primitive recursive function f is determined by its definition, which
consists of a string of functions f0, f1, . . . , fn−1 = f such that each function is ei-
ther an initial function, or obtained from earlier ones by substitution or primitive
recursion.

It is a matter of routine to code the whole definition into a natural number
such that all information can be effectively extracted from the code (see Hinman
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1978, p. 34). The construction shows that we may define a function F such that
F(x, y) = fx(y), where fx is the primitive recursive function with code x. Now
consider D(x)= F(x, x)+1. Suppose that D is primitive recursive, i.e. D = fn for
a certain n, but then D(n)= F(n,n)+ 1= fn(n)+ 1 �= fn(n). Contradiction. It is
clear, however, from the definition of D that it is effective, i.e. we have an (informal)
algorithm to compute D(n) for each n; so we have indicated how to get an effec-
tive function which is not primitive recursive. The above result can also be given
the following formulation: there is no binary primitive recursive function F(x, y)

such that each unary primitive function is F(n,y) for some n. In other words, the
primitive functions cannot be primitive recursively enumerated.

The argument is in fact completely general; suppose we have a class of effective
functions that can enumerate itself in the manner considered above, then we can al-
ways “diagonalize out of the class” by the D function. We call this diagonalization.
The moral of this observation is that we have little hope of obtaining all effective
functions in an effective way. The diagonalization technique goes back to Cantor,
who introduced it to show that the reals are not denumerable. In general he used
diagonalization to show that the cardinality of a set is less than the cardinality of its
power set.

Exercises

1. If h1 and h2 are primitive recursive, then so are f and g, where
⎧
⎪⎪⎨

⎪⎪⎩

f (0)= a1
g(0)= a2
f (x + 1)= h1(f (x), g(x), x)

g(x + 1)= h2(f (x), g(x), x).

2. Show that the Fibonacci series is primitive recursive, where
{

f (0)= f (1)= 1
f (x + 2)= f (x)+ f (x + 1).

3. Let [a] denote the integer part of the real number a (i.e. the greatest integer ≤ a).
Show that [ x

y+1 ], for natural numbers x and y, is primitive recursive.
4. Show that max(x, y) and min(x, y) are primitive recursive.
5. Show that the gcd (greatest common divisor) and lcm (least common multiple)

are primitive recursive.
6. Cantor’s pairing function is given by P(x, y)= 1

2 ((x+y)2+3x+y). Show that
P is primitive recursive, and that P is a bijection of N2 onto N. (Hint: consider in
the plane a walk along all lattice points as follows: (0,0)→ (0,1)→ (1,0)→
(0,2)→ (1,1)→ (2,0)→ (0,3)→ (1,2)→ ·· ·.) Define the “inverses” L and
R such that P(L(z),R(z))= z and show that they are primitive recursive.

7. Show pn ≤ 22n
.
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8.2 Partial Recursive Functions

Given the fact that the primitive recursive functions do not exhaust the numerical
algorithms, we extend in a natural way the class of effective functions. As we have
seen that an effective generation of all algorithms invariably brings us in conflict
with diagonalization, we will widen our scope by allowing partial functions. In this
way the conflicting situation D(n)=D(n)+ 1 for a certain n only tells us that D is
not defined for n.

In the present context functions have natural domains, i.e. sets of the form N
n

(= {(m0, . . . ,mn−1) | mi ∈ N}, called Cartesian products), a partial function has a
domain that is a subset of Nn. If the domain is all of Nn, then we call the function
total.

Example f (x)= x2 is total, g(x)= μy[y2 = x] is partial and not total (g(x) is the
square root of x if it exists).

The algorithms that we are going to introduce are called partial recursive func-
tions; perhaps recursive, partial functions would have been a better name. However,
the name has come to be generally accepted. The particular technique for defining
partial recursive functions that we employ here goes back to Kleene. As before,
we use an inductive definition; apart from clause R7 below, we could have used
a formulation almost identical to that of the definition of the primitive recursive
functions. Since we want a built-in universal function, that is a function that effec-
tively enumerates the functions, we have to employ a more refined technique that
allows explicit reference to the various algorithms. The trick is not esoteric at all,
we simply give each algorithm a code number, called its index. We fix these indices
in advance so that we can speak of the “algorithm with index e yields output y on
input (x0, . . . , xn−1)”, symbolically represented as {e}(x0, . . . , xn−1)3 y.

The heuristics of this “index applied to input” is that an index is viewed as
a description of an abstract machine that operates on inputs of a fixed arity. So
{e}((n) 3 m must be read as “the machine with index e operates on (n and yields
output m”. It may very well be the case that the machine does not yield an output;
in that case we say that {e}((n) diverges. If there is an output, we say that {e}((n) con-
verges. That the abstract machine is an algorithm will appear from the specification
in the definition below.

Note that we do not know in advance that the result is a function, i.e. that for
each input there is at most one output. However plausible that is, it has to be shown.
Kleene has introduced the symbol 3 for “equality” in contexts where terms may
be undefined. This happens to be useful in the study of algorithms that need not
necessarily produce an output. The abstract machines above may, for example, get
into a computation that runs on forever. For example, it might have an instruction
of the form “the output at n is the successor of the output at n + 1”. It is easy to
see that for no n an output can be obtained. In this context the use of the existence
predicate would be useful, and 3 would be the ≡ of the theory of partial objects
(cf. Troelstra–van Dalen, 2.2). The convention ruling 3 is: if t 3 s then t and s are
simultaneously defined and identical, or they are simultaneously undefined.
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Definition 8.2.1 The relation {e}((x)3 y is inductively defined by

R1 {〈0, n, q〉}(m0, . . . ,mn−1)3 q

R2 {〈1, n, i〉}(m0, . . . ,mn−1)3mi , for 0≤ i < n

R3 {〈2, n, i〉}(m0, . . . ,mn−1)3mi + 1, for 0≤ i < n

R4 {〈3, n+ 4〉}(p, q, r, s,m0, . . . ,mn−1)3 p if r = s

{〈3, n+ 4〉}(p, q, r, s,m0, . . . ,mn−1)3 q if r �= s

R5 {〈4, n, b, c0, . . . , ck−1〉}(m0, . . . ,mn−1) 3 p if there are q0, . . . , qk−1 such that
{ci}(m0, . . . ,mn−1)3 qi(0≤ i < k) and {b}(q0, . . . , qk−1)3 p

R6 {〈5, n+ 2〉}(p, q,m0, . . . ,mn−1)3 S1
n(p, q)

R7 {〈6, n+ 1〉}(b,m0, . . . ,mn−1)3 p if {b}(m0, . . . ,mn−1)3 p

The function S1
n in R6 will be specified in the Sm

n theorem below.
Keeping the above reading of {e}((x) in mind, we can paraphrase the schemas as

follows:

R1 the machine with index 〈0, n, q〉 yields for input (m0, . . . ,mn−1) output q (the
constant function)

R2 the machine with index 〈1, n, i〉 yields for input (m output mi (the projection
function P n

i )
R3 the machine with index 〈2, n, i〉 yields for input (m output mi + 1 (the successor

function on the ith argument)
R4 the machine with index 〈3, n+ 4〉 tests the equality of the third and fourth argu-

ments of the input and yields the first argument in the case of equality, and the
second argument otherwise (the discriminator function)

R5 the machine with index 〈4, n, b, c0, . . . , ck−1〉 first simulates the machines with
index c0, . . . , ck−1 with input (m, then uses the output sequence (q0, . . . , qk−1)

as input and simulates the machine with index b (substitution)
R7 the machine with index 〈6, n+ 1〉 simulates for a given input b,m0, . . . ,mn−1,

the machine with index b and input m0, . . . ,mn−1 (reflection)

Another way to view R7 is that it provides a universal machine for all machines
with n-argument inputs, that is, it accepts as an input the indices of machines, and
then simulates them. This is the kind of machine required for the diagonalization
process. If one thinks of idealized abstract machines, then R7 is quite reasonable.
One would expect that if indices can be “deciphered”, a universal machine can be
constructed. This was indeed accomplished by Alan Turing, who constructed (ab-
stractly) a universal Turing machine.

The scrupulous might call R7 a case of cheating, since it does away with all the
hard work one has to do in order to obtain a universal machine, for example in the
case of Turing machines.

As {e}((x) 3 y is inductively defined, everything we proved about inductively
defined sets applies here. For example, if {e}((x)3 y is the case, then we know that
there is a formation sequence (see p. 9) for it. This sequence specifies how {e} is
built up from simpler partial recursive functions.

Note that we could also have viewed the above definition as an inductive defini-
tion of the set of indices (of partial recursive functions).
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Lemma 8.2.2 The relation {e}((x)3 y is functional.

Proof We have to show that {e} behaves as a function, that is {e}((x) 3 y,
{e}((x)3 z⇒ y = z. This is done by induction on the definition of {e}. We leave the
proof to the reader. �

The definition of {e}((n) 3 m has a computational content, it tells us what to
do. When presented with {e}((n), we first look at e; if the first “entry” of e is 0, 1
or 2, then we compute the output via the corresponding initial function. If the first
“entry” is 3, then we determine the output “by cases”. If the first entry is 4, we first
do the subcomputations indicated by {ci}( (m), then we use the outputs to carry out
the subcomputation for {b}((n). And so on.

If R7 is used in such a computation, we are no longer guaranteed that it will stop;
indeed, we may run into a loop, as the following simple example shows.

From R7 it follows, as we will see below, that there is an index e such that
{e}(x) = {x}(x). To compute {e} for the argument e we pass, according to R7, to
the right-hand side, i.e. we must compute {e}(e), since e was introduced by R7, we
must repeat the transitions to the right-hand side, etc. Evidently our procedure does
not get us anywhere!

Conventions. The relation {e}((x) 3 y defines a function on a domain, which
is a subset of the “natural domain”, i.e. a set of the form N

n. Such functions are
called partial recursive functions; they are traditionally denoted by symbols from
the Greek alphabet, ϕ,ψ,σ , etc. If such a function is total on its natural domain,
it is called recursive, and denoted by a roman symbol, f,g,h, etc. The use of the
equality symbol “=” is proper in the context of total functions. However, in practice
when no confusion arises, we will often use it instead of “3”. The reader should
take care not to confuse formulas and partial recursive functions; it will always be
clear from the context what a symbol stands for. Sets and relations will be denoted
by roman capitals. When no confusion can arise, we will sometimes drop brack-
ets, as in {e}x for {e}(x). Some authors use a “bullet” notation for partial recursive
functions: e • (x. We will stick to “Kleene brackets”: {e}((x).

The following terminology is traditionally used in recursion theory.

Definition 8.2.3

1. If for a partial function ϕ ∃y(ϕ((x) = y), then we say that ϕ converges at (x,
otherwise ϕ diverges at (x.

2. If a partial function converges for all (proper) inputs, it is called total.
3. A total partial recursive function (sic!) will be called a recursive function.
4. A set (relation) is called recursive if its characteristic function (which, by defini-

tion, is total) is recursive.

Observe that it is an important feature of computations, as defined in Defini-
tion 8.2.1, that {e}(ψ0((n),ψ1((n), . . . ,ψk−1((n)) diverges if one of its arguments
ψi((n) diverges. So, for example, the partial recursive function {e}(x)− {e}(x) need
not converge for all e and x, we first must know that {e}(x) converges!
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This feature is sometimes inconvenient and slightly paradoxical, e.g. in direct
applications of the discriminator scheme R4, {〈3,4〉}(ϕ(x),ψ(x),0,0) is undefined
when the (seemingly irrelevant) function ψ(x) is undefined.

With a bit of extra work, we can get an index for a partial recursive function that
does definition by cases on partial recursive functions:

{e}((x)=
{ {e1}((x) if g1((x)= g2((x)

{e2}((x) if g1((x) �= g2((x)

for recursive g1, g2.
Define

ϕ((x)=
{

e1 if g1((x)= g2((x)

e2 if g1((x) �= g2((x)

by ϕ((x) = {〈3,4〉}(e1, e2, g1((x), g2((x)). So {e}((x) = {ψ((x)}((x) = [by R7]
{〈6, n+ 1〉}(ψ((x), (x). Now use R5 (substitution) to get the required index.

Since the primitive recursive functions form such a natural class of algorithms, it
will be our first goal to show that they are included in the class of recursive functions.

The following important theorem has a neat machine motivation. Consider a ma-
chine with index e operating on two arguments x and y. Keeping x fixed, we have
a machine operating on y. So we get a sequence of machines, one for each x. Does
the index of each such machine depend in a decent way on x? The plausible answer
seems “yes”. The following theorem confirms this.

Theorem 8.2.4 (The Sm
n Theorem) For every m,n with 0 < m < n there exists a

primitive recursive function Sm
n such that

{
Sm

n (e, x0, . . . , xm−1)
}
(xm, . . . , xn−1)= {e}((x).

Proof The first function, S1
n , occurs in R6. We have postponed the precise definition,

here it is:

S1
n(e, y) = 〈

4, (e)1
.− 1, e,

〈
0, (e)1

.− 1, y
〉
,

〈
1, (e)1

.− 1,0
〉
, . . . ,

〈
1, (e)1

.− 1, n
.− 2

〉〉
.

Note that the arities are correct, {e} has one argument more than the constant func-
tion and the projection functions involved.

Now {S1
n(e, y)}((x)= z⇔ there are q0 · · ·qn−1 such that

{〈
0, (e)1

.− 1, y
〉}

((x)= q0
{〈

1, (e)1
.− 1,0

〉}
((x)= q1

...{〈
1, (e)1

.− 1, n
.− 2

〉}
((x)= qn−1

{e}(q0, . . . , qn−1)= z.

By the clauses R1 and R2 we get q0 = y and qi+1 = xi (0 ≤ i ≤ n − 1), so
{S1

n(e, y)}((x)= {e}(y, (x). Clearly, S1
n is primitive recursive.
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The primitive recursive function Sm
n is obtained by applying S1

n m times. From
our definition it follows that Sm

n is also recursive. �

The Sm
n function allows us to consider some inputs as parameters, and the rest

as proper inputs. This is a routine consideration in everyday mathematics: “consider
f (x, y) as a function of y”. The logical notation for this specification of inputs
makes use of the lambda operator. Say t (x, y, z) is a term (in some language), then
λx · t (x, y, z) is for each choice of y, z the function x %→ t (x, y, z). We say that
y and z are parameters in this function. The evaluation of these lambda terms is
simple: λx · t (x, y, z)(n) = t (n, y, z). This topic belongs to the lambda calculus;
for us the notation is just a convenient tool to express ourselves succinctly.

The Sm
n theorem expresses a uniformity property of the partial recursive func-

tions. It is obvious indeed that, say for a partial recursive function ϕ(x, y), each
individual ϕ(n, y) is partial recursive (substitute the constant n function for x), but
this does not yet show that the index of λy · ϕ(x, y) is in a systematic, uniform way
computable from the index of ϕ and x. By the Sm

n theorem, we know that the index
of {e}(x, y, z), considered as a function of, say, z depends primitive recursively on
x and y: {h(x, y)}(z)= {e}(x, y, z). We will see a number of applications of the Sm

n

theorem.
Next we will prove a powerful theorem about partial recursive functions that

allows us to introduce partial recursive functions by inductive definitions, or by
implicit definitions. Partial recursive functions can, by this theorem, be given as
solutions of certain equations.

Example

ϕ(n)=
{

0 if n is a prime, or 0, or 1
ϕ(2n+ 1)+ 1 otherwise.

Then ϕ(0)= ϕ(1)= ϕ(2)= ϕ(3)= 0, ϕ(4)= ϕ(9)+ 1= ϕ(19)+ 2= 2, ϕ(5)= 0,
and, e.g. ϕ(85)= 6. Prima facie, we cannot say much about such a sequence. The
following theorem of Kleene shows that we can always find a partial recursive so-
lution to such an equation for ϕ.

Theorem 8.2.5 (The Recursion Theorem) There exists a primitive recursive func-
tion rc such that for each e and (x {rc(e)}((x)= {e}(rc(e), (x).

Let us note first that the theorem indeed gives the solution r of the following
equation: {r}((x) = {e}(r, (x). Indeed the solution depends primitive recursively on
the given index e: {f (e)}(x)= {e}(f (e), x). If we are not interested in the (primitive
recursive) dependence of the index of the solution on the old index, we may even be
content with the solution of {f }(x)= {e}(f, x).

Proof Let ϕ(m, e, (x) = {e}(S2
n+2(m,m, e), (x) and let p be an index of ϕ. Put

rc(e)= S2
n+2(p,p, e), then
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{
rc(e)

}
((x)= {

S2
n+2(p,p, e)

}
((x)= {p}(p, e, (x)= ϕ(p, e, (x)

= {e}(S2
n+2(p,p, e), (x)= {e}(rc(e), (x)

. �

As a special case we get the following.

Corollary 8.2.6 For each e there exists an n such that {n}((x)= {e}(n, (x).

Corollary 8.2.7 If {e} is primitive recursive, then the solution of the equation
{f (e)}((x)= {e}(f (e), (x) given by the recursion theorem is also primitive recursive.

Proof Immediate from the explicit definition of the function rc. �

We will give a number of examples as soon as we have shown that we can obtain
all primitive recursive functions, for then we have an ample stock of functions to
experiment on. First we have to prove some more theorems.

The partial recursive functions are closed under a general form of minimization,
sometimes called unbounded search, which for a given recursive function f (y, (x)

and arguments (x runs through the values of y and looks for the first one that makes
f (y, (x) equal to zero.

Theorem 8.2.8 Let f be a recursive function, then ϕ((x)= μy[f (y, (x)= 0] is par-
tial recursive.

Proof The idea is to compute consecutively f (0, (x), f (1, (x), f (2, (x), . . . until we
find a value 0. This need not happen at all, but if it does, we will get to it. While
we are computing these values, we keep count of the number of steps. This is taken
care of by a recursive function. So we want a function ψ with index e, operating
on y and (x, that does the job for us, i.e. a ψ that after computing a positive value
for f (y, (x) moves on to the next input y and adds a 1 to the counter. Since we have
hardly any arithmetical tools at the moment, the construction is rather roundabout
and artificial.

In the table below we compute f (y, (x) step by step (the outputs are in the third
row), and in the last row we compute ψ(y, (x) backwards, as it were.

y 0 1 2 3 . . . k − 1 k

f (y, (x) f (0, (x) f (1, (x) f (2, (x) f (3, (x) . . . f (k − 1, (x) f (k, (x)

2 7 6 12 . . . 3 0
ψ(y, (x) k k − 1 k− 2 k − 3 . . . 1 0

ψ(0, (x) is the required k. The instruction for ψ is simple:

ψ(y, (x)=
{

0 if f (y, (x)= 0
ψ(y + 1, (x)+ 1 else.
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In order to find an index for ψ , put ψ(y, (x)= {e}(y, (x) and look for a value for e.
We introduce two auxiliary functions ψ1 and ψ2 with indices b and c such that
ψ1(e, y, (x) = 0 and ψ2(e, y, (x) = ψ(y + 1, (x)+ 1 = {e}(y + 1, (x)+ 1. The index
c follows easily by applying R3,R7 and the Sm

n Theorem. If f (y, (x) = 0 then we
consider ψ1, if not, ψ2. Now we introduce, by clause R4, a new function χ0 which
computes an index:

χ0(e, y, (x)=
{

b if f (y, (x)= 0
c else

and we put χ(e, y, (x) = {χ0(e, y, (x)}(e, y, (x). The recursion theorem provides us
with an index e0 such that χ(e0, y, (x)= {e0}(y, (x).

We claim that {e0}(0, (x) yields the desired value k, if it exists at all, i.e. e0 is the
index of the ψ we were looking for, and ϕ((x)= {e}(o, (x).

If f (y, (x) �= 0 then χ(e0, y, (x)= {c}(e0, y, (x)=ψ2(e0, y, (x)=ψ(y+ 1, (x)+ 1,
and if f (y, (x)= 0 then χ(e0, y, (x)= {b}(e0, y, (x)= 0.

If, on the other hand, k is the first value y such that f (y, (x)= 0, then ψ(0, (x)=
ψ(1, (x)+ 1=ψ(2, (x)+ 2= · · · =ψ(y0, (x)+ y0 = k. �

Note that the given function need not be recursive, and that the above argument
also works for partial recursive f . We then have to reformulate μy[f (x, (y)= 0] as
the y such that f (y, (x)= 0 and for all z < y f (z, (x) is defined and positive.

Lemma 8.2.9 The predecessor is recursive.

Proof Define

x
.− 1=

{
0 if x = 0
μy[y + 1= x] else

where μy[y + 1= x] = μy[f (y, x)= 0] with

f (y, x)=
{

0 if y + 1= x

1 else. �

Theorem 8.2.10 The recursive functions are closed under primitive recursion.

Proof Let g and h be recursive, and let f be given by
{

f (0, (x)= g((x)

f (y + 1, (x)= h(f (y, (x), (x, y).

We rewrite the schema as

f (y, (x)=
{

g((x) if y = 0
h(f (y

.− 1, (x), (x, y
.− 1) otherwise.

On the right-hand side we have a definition by cases. So, it defines a partial
recursive function with index, say, a of y, (x and the index e of the function f we
are looking for. This yields an equation {e}(y, (x) = {a}(y, (x, e). By the recursion
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theorem the equation has a solution e0. And an easy induction on y shows that {e0}
is total, so f is a recursive function. �

We now get the obligatory result.

Corollary 8.2.11 All primitive recursive functions are recursive.

Now that we have recovered the primitive recursive functions, we can get lots of
partial recursive functions.

Examples

1. Define ϕ(x)= {e}(x)+ {f }(x), then by Corollary 8.2.11 and R5 ϕ is partial re-
cursive and we would like to express the index of ϕ as a function of e and f .
Consider ψ(e,f, x) = {e}(x) + {f }(x). ψ is partial recursive, so it has an in-
dex n, i.e. {n}(e, f, x) = {e}(x)+ {f }(x). By the Sm

n Theorem there is a prim-
itive recursive function h such that {n}(e, f, x) = {h(n, e, f )}(x). Therefore,
g(e, f )= h(n, e, f ) is the required function.

2. There is a partial recursive function ϕ such that ϕ(n) = (ϕ(n + 1) + 1)2: con-
sider {z}(n)= {e}(z, n)= ({z}(n+ 1)+ 1)2. By the recursion theorem there is a
solution rc(e) for z, hence ϕ exists. A simple argument shows that ϕ cannot be
defined for any n, so the solution is the empty function (the machine that never
gives an output).

3. The Ackermann function, see Smoryński (1991, p. 70). Consider the following
sequence of functions:

ϕ0(m,n)= n+m

ϕ1(m,n)= n ·m
ϕ2(m,n)= nm

...{
ϕk+1(0, n)= n

ϕk+1(m+ 1, n)= ϕk(ϕk+1(m,n),n) (k ≥ 2).

This sequence consists of faster and faster growing functions. We can lump all
those functions together in one function

ϕ(k,m,n)= ϕk(m,n).

The above equations can be summarized as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ(0,m,n)= n+m

ϕ(k+ 1,0, n)=
⎧
⎨

⎩

0 if k = 0
1 if k = 1
n else

ϕ(k+ 1,m+ 1, n)= ϕ(k,ϕ(k + 1,m,n),n).

Note that the second equation has to distinguish cases according to the ϕk+1
being the multiplication, exponentiation or the general case (k ≥ 2).
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Using the fact that all primitive recursive functions are recursive, we rewrite
the three cases into one equation of the form {e}(k,m,n) = f (e, k,m,n) for a
suitable recursive f (Exercise 3). Hence, by the Recursion Theorem there exists
a recursive function with index e that satisfies the equations above. Ackermann
has shown that the function ϕ(n,n,n) eventually grows faster than any primitive
recursive function.

4. The Recursion Theorem can also be used for inductive definitions of sets or rela-
tions. This is seen by changing over to characteristic functions, e.g. suppose we
want a relation R(x, y) such that

R(x, y) ⇔ (x = 0∧ y �= 0)∨ (x �= 0∧ y �= 0)∧R(x
.− 1, y

.− 1).

Then we write

KR(x, y)= sg
(
sg(x) · sg(y)+ sg(x) · sg(y) ·KR(x

.− 1, y
.− 1)

)
,

so there is an e such that

KR(x, y)= {e}(KR(x
.− 1, y

.− 1), x, y
)
.

Now suppose KR has index z, then we have

{z}(x, y)= {
e′

}
(z, x, y).

The solution {n} as provided by the Recursion Theorem is the required charac-
teristic function. One immediately sees that R is the relation “less than”. There-
fore {n} is total, and hence recursive; this shows that R is also recursive. Note
that by the remark following the Recursion Theorem we even get the primitive
recursiveness of R.

The following fundamental theorem is extremely useful for many applications.
Its theoretical importance is that it shows that all partial recursive functions can be
obtained from a primitive recursive relation by one minimization.

So minimization is the missing link between primitive recursive and (partial)
recursive.

Theorem 8.2.12 (Normal Form Theorem) There is a primitive recursive predicate
T such that {e}((x)= ((μz)T (e, 〈(x〉, z))1.

Proof Our heuristics for partial recursive functions was based on the machine
metaphor: think of an abstract machine with actions prescribed by the clauses R1
through R7. By retracing the index e of such a machine, we more or less give a
computation procedure. It now is a clerical task to specify all the steps involved in
such a “computation”. Once we have accomplished this, we have made our notion
of “computation” precise, and from the form of the specification, we can immedi-
ately conclude that “c is the code of a computation” is indeed primitive recursive.
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We look for a predicate T (e,u, z) that formalizes the heuristic statement “z is a
(coded) computation that is performed by a partial recursive function with index e

on input u” (i.e. 〈(x〉). The “computation” has been arranged in such a way that the
first projection of z is its output.

The proof is a matter of clerical perseverance—not difficult, but not exciting
either. For the reader it is better to work out a few cases by himself and to leave the
rest, than to spell out the following details.

First two examples.

(1) The successor function applied to (1,2,3):

S3
1(1,2,3)= 2+ 1= 3.

Warning, here S3
1 is used for the successor function operating on the second item of

the input string of length 3. The notation is only used here.
The index is e = 〈2,3,1〉, the input is u = 〈1,2,3〉 and the step is the direct

computation z= 〈3, 〈1,2,3〉, 〈2,3,1〉〉 = 〈3, u, e〉.
(2) The composition of projection and constant functions.

P 3
2

(
C2

0(7,0),5,1
)= 1.

By R5 the input of this function has to be a string of numbers, so we have to intro-
duce a suitable input. The simplest solution is to use (7,0) as input and manufacture
the remaining 5 and 1 out of them. So let us put

P 3
2

(
C2

0(7,0),5,1
)= P 3

2

(
C2

0(7,0),C2
5(7,0),C2

1(7,0)
)
.

In order to keep the notation readable, we will use variables instead of the nu-
merical inputs.

ϕ(y0, y1)= P 3
2

(
C2

0(y0, y1),C
2
5(y0, y1),C

2
1(y0, y1)

)= P 3
2

(
C2

0(y0, y1), x1, x2
)
.

Let us first write down the data for the component functions:

Index Input Step

C2
0 〈0,2,0〉 = e0 〈y0, y1〉 = u 〈0, u, e0〉 = z0

C2
x1

〈0,2, x1〉 = e1 〈y0, y1〉 = u 〈x1, u, e1〉 = z1

C2
x2

〈0,2, x2〉 = e2 〈y0, y1〉 = u 〈x2, u, e2〉 = z2

P 3
2 〈1,3,2〉 = e3 〈0, x1, x2〉 = u′ 〈x2, u

′, e3〉 = z3

Now for the composition:

Index Input Step

f (y0, y1) 〈4,2, e3, e0, e1, e2〉 = e 〈y0, y1〉 = u 〈x2, 〈y0, y1〉, e, z3, 〈z0, z1, z2〉〉 = z



228 8 Gödel’s Theorem

As we see in this example, “step” means the last step in the chain of steps that
leads to the output. Now for an actual computation on numerical inputs, all one has
to do is to replace y0, y1, x1, x2 by numbers and write out the data for ϕ(y0, y1).

We have tried to arrange the proof in a readable manner by providing a running
commentary.

The ingredients for, and conditions on, computations are displayed below. The
index contains the information given in the clauses Ri. The computation codes the
following items:

(1) the output
(2) the input
(3) the index
(4) subcomputations.

Note that z in the table below is the “master number”, i.e. we can read off the re-
maining data from z, e.g. e = (z)2, lth(u) = (e)1 = (z)2,1 and the output (if any)
of the computation, (z)0. In particular we can extract the “master numbers” of
the subcomputations. So, by decoding the code for a computation, we can effec-
tively find the codes for the subcomputations, etc. This suggests a primitive recur-
sive algorithm for the extraction of the total “history” of a computation from its
code. As a matter of fact, that is essentially the content of the Normal Form Theo-
rem.

Index Input Step Conditions on
subcomputationse u z

R1 〈0, n, q〉 〈(x〉 〈q,u, e〉
R2 〈1, n, i〉 〈(x〉 〈xi, u, e〉
R3 〈2, n, i〉 〈(x〉 〈xi + 1, u, e〉
R4 〈3, n+ 4〉 〈p,q, r, s, (x〉 〈p,u, e〉 if r = s

〈q,u, e〉 if r �= s

R5 〈4, n, b, c0, . . . , ck−1〉 〈(x〉 〈(z′)0, u, e, z′,
〈z′′0, . . . , z′′k−1〉〉

z′, z′′0, . . . , z′′k−1 are
computations with
indices b, c0, . . . , ck−1.
z′ has input
〈(z′′0)0, . . . , (z

′′
k−1)0〉

R6 〈5, n+ 2〉 〈p,q, (x〉 〈s, u, e〉 (cf. Theorem 8.2.4)

R7 〈6, n+ 1〉 〈b, (x〉 〈(z′)0, u, e, z′〉 z′ is a computation with
input 〈(x〉 and index b

We will now proceed in a (slightly) more formal manner, by defining a predicate
C(z) (for z is a computation), using the information of the preceding table. For
convenience, we assume that in the clauses below, sequences u (in Seq(u)) have
positive length.
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C(z) is defined by cases as follows:

C(z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃q,u, e < z[z= 〈q,u, e〉 ∧ Seq(u)∧ e= 〈0, lth(u), q〉] (1)

or
∃u, e, i < z[z= 〈(u)i , u, e〉 ∧ Seq(u)∧ e= 〈1, lth(u), i〉] (2)

or
∃u, e, i < z[z= 〈(u)i + 1, u, e〉 ∧ Seq(u)∧ e= 〈2, lth(u), i〉] (3)

or
∃u, e < z[Seq(u)∧ e= 〈3, lth(u)〉 ∧ lth(u) > 4∧ ([z= 〈(u)0, u, e〉

∧ (u)2 = (u)3] ∨ [z= 〈(u)1, u, e〉 ∧ (u)2neq(u)3])] (4)

or
Seq(z)∧ lth(z)= 5∧ Seq((z)2)∧ Seq((z)4)∧ lth((z)2)

= 3+ lth((z)4)∧ (z)2,0 = 4∧C((z)3)∧ (z)3,0 = (z)0 ∧ (z)3,1
= 〈(z)4,0,0, . . . , (z)4,lth((z)4),0〉 ∧ (z)3,2 = (z)2,2

∧∧lth((z)4)−1
i=0 [C((z)4,i )∧ (z)4,i,2 = (z)0,2+i ∧ (z)4,i,1 = (z)1] (5)

or
∃s, u, e < z[z= 〈s, u, e〉 ∧ Seq(u)∧ e= 〈5, lth(u)〉
∧ s = 〈4, (u)0,1

.− 1, (u)0, 〈0, (u)0,1
.− 1, (u)1〉, 〈1, (u)0,1

.− 1,0〉,
. . . , 〈1, (u)0,1

.− 1, (e)1
.− 2〉〉], (6)

or
∃u, e,w < z[Seq(u)∧ e= 〈6, lth(y)〉 ∧ z= 〈(w)0, u, e,w〉 ∧C(w)

∧ (w)2 = (u)0 ∧ (w)1 = 〈(u)1, . . . , (u)lth(u)−1〉]. (7)

We observe that the predicate C occurs on the right-hand side only for smaller
arguments, furthermore all operations involved in this definition of C(z) are prim-
itive recursive. We now apply the recursion theorem, as in the example on p. 226,
and conclude that C(z) is primitive recursive.

Now we put T (e, (x, z) := C(z) ∧ e = (z)2 ∧ 〈(x〉 = (z)1. So the predicate
T (e, (x, z) formalizes the statement “z is the computation of the partial recursive
function (machine) with index e operating on input 〈(x〉”. The output of the compu-
tation, if it exists, is U(z)= (z)0; hence we have {e}((x)= (μzT (e, (x, z))0.

For applications the precise structure of T is not important; it is good enough to
know that it is primitive recursive. �

Exercises

1. Show that the empty function (that is the function that diverges for all inputs) is
partial recursive. Indicate an index for the empty function.

2. Show that each partial recursive function has infinitely many indices.
3. Carry out the conversion of the three equations of the Ackermann function into

one function, see p. 225.

8.3 Recursively Enumerable Sets

If a set A has a recursive characteristic function, then this function acts as an effec-
tive test for membership. We can decide which elements are in A and which not.
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Decidable sets, convenient as they are, demand too much; it is usually not necessary
to decide what is in a set, as long as we can generate it effectively. Equivalently, as
we shall see, it is good enough to have an abstract machine that only accepts ele-
ments, and does not reject them. If you feed it an element, it may eventually show a
green light of acceptance, but there is no red light for rejection.

Definition 8.3.1

1. A set (relation) is (recursively) decidable if it is recursive.
2. A set is recursively enumerable (RE) if it is the domain of a partial recursive

function.
3. Wk

e = {(x ∈ N
k|∃y({e}((x) = y}, i.e. the domain of the partial recursive func-

tion {e}. We call e the RE index of Wk
e . If no confusion arises we will delete

the superscript.

Notation We write ϕ((x) ↓ (resp. ϕ((x) ↑) for ϕ((x) converges (resp. ϕ((x) diverges).

It is good heuristics to think of RE sets as being accepted by machines, e.g. if Ai

is accepted by machine Mi (i = 0,1), then we make a new machine that simulates
M0 and M1 simultaneously, e.g. you feed M0 and M1 an input, and carry out the
computation alternatingly—one step for M0 and then one step for M1, and so n is
accepted by M if it is accepted by M0 or M1. Hence the union of two RE sets is
also RE.

Example 8.3.2

1. N= the domain of the constant 1 function.
2. ∅ = the domain of the empty function. This function is partial recursive, as we

have already seen.
3. Every recursive set is RE. Let A be recursive, put

ψ((x)= μy
[
KA((x)= y ∧ y �= 0

]
.

Then Dom(ψ)=A.

The recursively enumerable sets derive their importance from the fact that they
are effectively given, in the precise sense of the following theorem. Furthermore it is
the case that the majority of important relations (sets) in logic are RE. For example
the set of (codes of) provable sentences of arithmetic or predicate logic is RE. The
RE sets represent the first step beyond the decidable sets, as we will show below.

Theorem 8.3.3 The following statements are equivalent (A⊆N):

1. A=Dom(ϕ) for some partial recursive ϕ,
2. A= Ran(ϕ) for some partial recursive ϕ,
3. A= {x|∃yR(x, y)} for some recursive R.
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Proof (1) ⇒ (2). Define ψ(x)= x · sg(ϕ(x)+ 1). If x ∈ Dom(ϕ), then ψ(x)= x,
so x ∈ Ran(ψ), and if x ∈ Ran(ψ), then ϕ(x) ↓, so x ∈Dom(ϕ).

(2) ⇒ (3) Let A= Ran(ϕ), with {g} = ϕ, then

x ∈A ⇔ ∃w[
T

(
g, (w)0, (w)1

)∧ x = (w)1,0
]
.

The relation in the scope of the quantifier is recursive.
Note that w “simulates” a pair: first coordinate—input, second coordinate—

computation, all in the sense of the Normal Form Theorem.
(3) ⇒ (1) Define ϕ(x)= μyR(x, y). ϕ is partial recursive and Dom(ϕ)=A.
Observe that (1) ⇒ (3) also holds for A⊆N

k . �

Since we have defined recursive sets by means of characteristic functions, and
since we have established closure under primitive recursion, we can copy all the
closure properties of primitive recursive sets (and relations) for the recursive sets
(and relations).

Next we list a number of closure properties of RE sets. We will also write sets
and relations as predicates, when that turns out to be convenient.

Theorem 8.3.4

1. If A and B are RE, then so are A∪B and A∩B .
2. If R(x, (y) is RE, then so is ∃xR(x, (y).
3. If R(x, (y) is RE and ϕ partial recursive, then R(ϕ((y, (z), (y) is RE.
4. If R(x, (y) is RE, then so are ∀x < zR(x, (y) and ∃x < zR(x, (y).

Proof (1) There are recursive R and S such that

A(y ⇔ ∃xR(x, (y),

B (y ⇔ ∃xS(x, (y).

Then

A(y ∧B (y ⇔ ∃x1x2
(
R(x1, (y)∧ S(x2, (y)

)

⇔ ∃z(R(
(z)0, (y

)∧ S
(
(z)1, (y

))
.

The relation in the scope of the quantifier is recursive, so A ∩ B is RE. A similar
argument establishes the recursive enumerability of A ∪ B . The trick of replacing
x1 and x2 by (z)0 and (z)1 and ∃x1x2 by ∃z is called contraction of quantifiers.

(2) Let R(x, (y) ⇔ ∃zS(z, x, (y) for a recursive S, then ∃xR(x, (y) ⇔ ∃x∃z
S(z, x, (y)⇔∃uS((u)0, (u)1, (y). So the projection ∃xR(x, (y) of R is RE.

Geometrically speaking, ∃xR(x, (y) is indeed a projection. Consider the two-
dimensional case.

The vertical projection S of R is given by Sx⇔∃yR(x, y).
(3) Let R be the domain of a partial recursive ψ , then R(ϕ((y, (z), (y) is the domain

of ψ(ϕ((y, (z), (y).
(4) Left to the reader. �
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Theorem 8.3.5 The graph of a partial function is RE iff the function is partial
recursive.

Proof G = {((x, y)|y = {e}((x)} is the graph of {e}. Now ((x, y) ∈ G ⇔
∃z(T (e, 〈(x〉, z)∧ y = (z)0), so G is RE.

Conversely, if G is RE, then G((x, y) ⇔ ∃zR((x, y, z) for some recursive R.
Hence ϕ((x)= (μwR((x, (w)0, (w)1))0, so ϕ is partial recursive. �

We can also characterize recursive sets in terms of RE sets. Suppose both A and
its complement Ac are RE, then (heuristically) we have two machines enumerating
A and Ac. Now the test for membership of A is simple: turn both machines on and
wait for n to turn up as output of the first or second machine. This must necessarily
occur in finitely many steps since n ∈A or n ∈Ac (principle of the excluded third!).
Hence, we have an effective test. We formalize the above.

Theorem 8.3.6 A is recursive ⇔A and Ac are RE.

Proof ⇒ is trivial: A((x)⇔∃yA((x), where y is a dummy variable. Similarly for Ac .
⇐ Let A((x)⇔ ∃yR((x, y),¬A((x)⇔ ∃zS(v, z). Since ∀(x(A((x) ∨ ¬A((x)), we

have ∀(x∃y(R((x, y)∨ S((x, y)), so f ((x)= μy[R((x, y)∨ S((x, y)] is recursive and if
we put in the y that we found in R((x, y), then we know that if R((x,f ((x)) is true,
the (x belongs to A. So A((x)⇔R((x,f ((x)), i.e. A is recursive. �

For partial recursive functions we have a strong form of definition by cases.

Theorem 8.3.7 Let ψ1, . . . ,ψk be partial recursive, R0, . . . ,Rk−1 mutually disjoint
RE relations, then the following function is partial recursive:

ϕ((x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ0((x) if R0((x)

ψ1((x) if R1((x)
...

ψk−1((x) if Rk−1((x)

↑ else

Proof We consider the graph of the function ϕ.

G((x, y) ⇔ (
R0((x)∧ y =ψ1((x)

)∨ · · · ∨ (
Rk−1((x)∧ y =ψk−1((x)

)
.
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By the properties of RE sets, G((x, y) is RE and, hence, ϕ((x) is partial recursive.
(Note that the last case in the definition of ϕ is just a bit of decoration.) �

Now we can show the existence of undecidable RE sets.

Examples

(1) (The Halting Problem (Turing))

Consider K = {x|∃zT (x, x, z)}. K is the projection of a recursive relation, so it
is RE. Suppose that Kc is also RE, then x ∈Kc ⇔ ∃zT (e, x, z) for some index e.
Now e ∈K ⇔∃zT (e, e, z)⇔ e ∈Kc . Contradiction. Hence K is not recursive by
Theorem 8.3.6. This tells us that there are recursively enumerable sets which are not
recursive. In other words, the fact that one can effectively enumerate a set, does not
guarantee that it is decidable.

The decision problem for K is called the halting problem, because it can be
paraphrased as “decide if the machine with index x performs a computation that
halts after a finite number of steps when presented with x as input”. Note that it is
ipso facto undecidable if “the machine with index x eventually halts on input y”.

It is a characteristic feature of decision problems in recursion theory, that they
concern tests for inputs out of some domain. It does not make sense to ask for a
decision procedure for, say, the Riemann hypothesis, since trivially there is a recur-
sive function f that tests the problem in the sense that f (0) = 0 if the Riemann
hypothesis holds and f (0)= 1 if the Riemann hypothesis is false. Namely, consider
the functions f0 and f1, which are the constant 0 and 1 functions respectively. Now
logic tells us that one of the two is the required function (this is the law of the ex-
cluded middle); unfortunately we do not know which function it is. So for single
problems (i.e. problems without a parameter), it does not make sense in the frame-
work of recursion theory to discuss decidability. As we have seen, intuitionistic logic
sees this “pathological example” in a different light.

(2) It is not decidable if {x} is a total function.

Suppose it were decidable, then we would have a recursive function f such that
f (x)= 0⇔{x} is total. Now consider

ϕ(x, y) :=
{

0 if x ∈K

↑ else

By the Sm
n Theorem there is a recursive h such that {h(x)}(y) = ϕ(x, y). Now

{h(x)} is total ⇔ x ∈K , so f (h(x))= 0⇔ x ∈K , i.e. we have a recursive charac-
teristic function sg(f (h(x))) for K . Contradiction. Hence such an f does not exist,
that is {x|{x} is total} is not recursive.

(3) The problem “We is finite” is not recursively solvable.

In words, “it is not decidable whether a recursively enumerable set is finite”.
Suppose that there was a recursive function f such that f (e) = 0 ⇔We is fi-

nite. Consider the h(x) defined in example (2). Clearly Wh(x) =Dom{h(x)} = ∅⇔
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x �∈ K , and Wh(x) is infinite for x ∈ K . f (h(x)) = 0 ⇔ x �∈ K , and hence
sg(f (h(x))) is a recursive characteristic function for K . Contradiction.

Note that x ∈K ⇔{x}x ↓, so we can reformulate the above solutions as follows:
in (2) take ϕ(x, y)= 0 · {x}(x) and in (3) ϕ(x, y)= {x}(x).

(4) The equality of RE sets is undecidable.

That is, {(x, y)|Wx =Wy} is not recursive. We reduce the problem to the solution
of (3) by choosing Wy = ∅.

(5) It is not decidable if We is recursive.

Put ϕ(x, y)= {x}(x) · {y}(y), then ϕ(x, y)= {h(x)}(y) for a certain recursive h,
and

Dom{h(x)} =
{

K if x ∈K

∅ otherwise.

Suppose there were a recursive function f such that f (x) = 0⇔Wx is recursive,
then f (h(x))= 0⇔ x �∈K and, hence, K would be recursive. Contradiction.

There are several more techniques for establishing undecidability. We will treat
here the method of inseparability.

Definition 8.3.8 Two disjoint RE sets Wm and Wn are recursively separable if there
is a recursive set A such that Wn ⊆ A and Wm ⊆ Ac. Disjoint sets A and B are
effectively inseparable if there is a partial recursive ϕ such that for every m,n with
A⊆Wm,B ⊆Wn,Wm ∩Wn = ∅ we have ϕ(m,n) ↓ and ϕ(m,n) �∈Wm ∪Wn.

We immediately see that effectively inseparable RE sets are recursively insepa-
rable, i.e. not recursively separable.

Theorem 8.3.9 There exist effectively inseparable RE sets.

Proof Define A= {x|{x}(x)= 0},B = {x|{x}(x)= 1}. Clearly A∩B = ∅ and both
sets are RE.

Let Wm ∩Wn = ∅ and A⊆Wm,B ⊂Wn. To define ϕ we start testing x ∈Wm or
x ∈Wn; if we first find x ∈Wm, we put an auxiliary function σ(x) equal to 1, if x

turns up first in Wn then we put σ(x)= 0.
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Formally

σ(m,n, x)=
⎧
⎨

⎩

1 if ∃z(T (m,x, z) and ∀y < z¬T (n, x, y))

0 if ∃z(T (n, x, z) and ∀y ≤ z¬T (m,x, y))

↑ else.

By the Sm
n Theorem {h(m,n)}(x)= σ(m,n, x) for some recursive h.

h(m,n) ∈Wm ⇒ h(m,n) �∈Wn. So ∃z(T (
m,h(m,n), z

)

∧∀y < z¬T
(
n,h(m,n), y

))

⇒ σ
(
m,n,h(m,n)

)= 1⇒ {
h(m,n)

}(
h(m,n)

)= 1
⇒ h(m,n) ∈ B⇒ h(m,n) ∈Wn.

Contradiction. Hence h(m,n) �∈ Wm. Similarly h(m,n) �∈ Wn. Thus h is the re-
quired ϕ. �

Definition 8.3.10 A subset A of N is productive if there is a partial recursive func-
tion ϕ, such that for each Wn ⊆A, ϕ(n) ↓ and ϕ(n) ∈A−Wn.

The theorem above gives us the following corollary.

Corollary 8.3.11 There are productive sets.

Proof The set Ac defined in the above proof is productive. Let Wk ⊆Ac. Put W� =
B ∪Wk =Wn ∪Wk =Wh(n,k) for a suitable recursive function h. Now apply the
separating function from the proof of the preceding theorem to A=Wm and Wh(n,k):
ϕ(m,h(n, k)) ∈Ac −Wm. �

Productive sets are in a strong sense not RE: no matter how one tries to fit an RE
set into them, one can uniformly and effectively indicate a point that is missed by
this RE set.

Exercises

1. The projection of an RE set is RE, i.e. if R((x, y) is RE then so is ∃yR((x, y).
2. (i) If A is enumerated by a strictly monotone function, then A is recursive.

(ii) If A is infinite and recursive, then A is enumerated by a strictly increasing
recursive function.

(iii) An infinite RE set contains an infinite recursive subset.
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3. Every non-empty RE set is enumerated by a total recursive function.
4. If A is an RE set and f a partially recursive function, then f−1(A)(= {x|f (x) ∈

A}) and f (A) are RE.
5. Show that the following are not recursive:

(i) {(x, y)|Wx =Wy}
(ii) {x|Wx is recursive}

(iii) {x|0 ∈Wx}.

8.4 Some Arithmetic

In the section on recursive functions we have been working in the standard model
of arithmetic; as we are now dealing with provability in arithmetic we have to avoid
semantical arguments and to rely solely on derivations inside the formal system of
arithmetic. The generally accepted theory for arithmetic goes back to Peano, and
thus we speak of Peano arithmetic, PA (cf. Sect. 3.7)

A major issue in the late 1920s was the completeness of PA. Gödel put an end
to prevailing high hopes of the day by showing that PA is incomplete (1931). In
order to carry out the necessary steps for Gödel’s proof, we have to prove a num-
ber of theorems in PA. Most of these facts can be found in texts on number theory,
or on the foundation of arithmetic. We will leave a considerable number of proofs
to the reader. Most of the time one has to apply a suitable form of induction. Im-
portant as the actual proofs are, the heart of Gödel’s argument lies in his ingenious
incorporation of recursion theoretic arguments inside PA.

One of the obvious stumbling blocks for a straightforward imitation of “self-
reference” is the apparent poverty of the language of PA. It does not allow us to
speak of, e.g., a finite string of numbers. Once we have exponentiation we can sim-
ply code finite sequences of numbers. Gödel showed that one can indeed define the
exponential (and much more) at the cost of some extra arithmetic, yielding his fa-
mous β-function. In 1971 Matijasevich showed by other means that the exponential
is definable in PA, thus enabling us to handle coding of sequences in PA directly.
Peano arithmetic plus exponentiation is prima facie stronger than PA, but the above
mentioned results show that exponentiation can be eliminated. Let us call the ex-
tended system PA; no confusion will arise.

We repeat the axioms:

• ∀x(S(x) �= 0),
• ∀xy(S(x)= S(y)→ x = y),
• ∀x(x + 0= x),
• ∀xy(x + S(y)= S(x + y)),
• ∀x(x · 0= 0),
• ∀xy(x · S(y)= x · y + x),
• ∀x(x0 = 1),
• ∀xy(xSy = xy · x),
• ϕ(0)∧ ∀x(ϕ(x)→ ϕ(S(x)))→∀xϕ(x).
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Since � 1 = S(0), we will use both S(x) and x + 1, whichever is convenient. We
will also use the usual abbreviations. In order to simplify the notation, we will tacitly
drop the “PA” in front of “�” whenever possible. As another harmless simplification
of notation we will often simply write n for n when no confusion arises.

In the following we will give a number of theorems of PA; in order to improve
the readability, we will drop the universal quantifiers preceding the formulas. The
reader should always think of “the universal closure of . . . ”.

Furthermore we will use the standard abbreviations of algebra, i.e. leave out the
multiplication dot, superfluous brackets, etc., when no confusion arises. We will also
write “n” instead of “n”.

The basic operations satisfy the well-known laws.

Lemma 8.4.1 Addition and multiplication are associative and commutative, and ·
distributes over +.

(i) � (x + y)+ z= x + (y + z)

(ii) � x + y = y + x

(iii) � x(yz)= (xy)z

(iv) � xy = yx

(v) � x(y + z)= xy + xz

(vi) � xy+z = xyxz

(vii) � (xy)z = xyz.

Proof Routine. �

Lemma 8.4.2

(i) � x = 0∨ ∃y(x = Sy)

(ii) � x + z= y + z→ x = y

(iii) � z �= 0→ (xz= yz→ x = y)

(iv) � x �= 0→ (xy = xz → y = z)

(v) � y �= 0→ (xy = zy → x = z)

Proof Routine. �

Some useful facts are listed in the exercises.
Although the language of PA is modest, many of the usual relations and functions

can be defined. The ordering is an important example.

Definition 8.4.3 x < y := ∃z(x + Sz= y)

We will use the following abbreviations:

x < y < z stands for x < y ∧ y < z

∀x < yϕ(x) , , ∀x(x < y→ ϕ(x))

∃x < yϕ(x) , , ∃x(x < y ∧ ϕ(x))

x > y , , y < x

x ≤ y , , x < y ∨ x = y.
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Theorem 8.4.4

(i) � ¬x < x

(ii) � x < y ∧ y < z→ x < z

(iii) � x < y ∨ x = y ∨ y < x

(iv) � 0= x ∨ 0 < x

(v) � x < y→ Sx = y ∨ Sx < y

(vi) � x < Sx

(vii) � ¬x < y ∧ y < Sx

(viii) � x < Sy↔ (x = y ∨ x < y)

(ix) � x < y↔ x + z < y + z

(x) � z �= 0→ (x < y↔ xz < yz)

(xi) � x �= 0→ (0 < y < z→ xy < xz)

(xii) � z �= 0→ (x < y→ xz < yz)

(xiii) � x < y↔ Sx < Sy.

Proof Routine. �

Quantification with an explicit bound can be replaced by a repeated disjunction
or conjunction.

Theorem 8.4.5 � ∀x < nϕ(x)↔ ϕ(0)∧ · · ·∧ϕ(n− 1), (n > 0), � ∃x < nϕ(x)↔
ϕ(0)∨ · · · ∨ ϕ(n− 1), (n > 0).

Proof Induction on n. �

Theorem 8.4.6

(i) Well-founded induction

� ∀x(∀y < x ϕ(y)→ ϕ(x)
)→∀xϕ(x)

(ii) Least number principle (LNP)

� ∃xϕ(x)→∃x(
ϕ(x)∧ ∀y < x¬ϕ(y)

)
).

Proof (i) Let us put ψ(x) := ∀y < xϕ(y). We assume ∀x(ψ(x)→ ϕ(x)) and pro-
ceed to apply induction on ψ(x).

Clearly �ψ(0).
So let by the induction hypothesis ψ(x).
Now ψ(Sx)↔ [∀y < Sxϕ(y)] ↔ [∀y((y = x ∨ y < x)→ ϕ(y))] ↔ [∀y((y =

x → ϕ(y))∧ (y < x → ϕ(y)))] ↔ [∀y(ϕ(x)∧ (y < x → ϕ(y)))] ↔ [ϕ(x)∧ ∀y <

xϕ(y)] ↔ [ϕ(x)∧ψ(x)].
Now ψ(x) was given and ψ(x) → ϕ(x). Hence we get ψ(Sx). This shows

∀xψ(x), and thus we derive ∀xϕ(x).
(ii) Consider the contraposition and reduce it to (i). �
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In our further considerations the following notions play a role.

Definition 8.4.7

(i) Divisibility

x|y := ∃z(xz= y)

(ii) Cut-off subtraction

z= y
.− x := (x < y ∧ x + z= y)∨ (y ≤ x ∧ z= 0)

(iii) Remainder after division

z= rem(x, y) := (
x �= 0∧ ∃u(y = ux + z)∧ z < x

)∨ (x = 0∧ z= y)

(iv) x is prime

Prime(x) := x > 1∧ ∀yz(x = yz→ y = x ∨ y = 1).

The right-hand sides of (ii) and (iii) indeed determine functions, as shown in the
following.

Lemma 8.4.8

(i) � ∀xy∃!z((x < y ∧ z+ x = y)∨ (y ≤ x ∧ z= 0))

(ii) � ∀xy∃!z((x �= 0∧ ∃u(y = ux + z)∧ z < y)∨ (x = 0∧ z= 0)).

Proof In both cases induction on y. �

There is another characterization of the prime numbers.

Lemma 8.4.9

(i) � Prime(x)↔ x > 1∧ ∀y(y|x→ y = 1∨ y = x)

(ii) � Prime(x)↔ x > 1∧ ∀yz(x|yz→ x|y ∨ x|z)
Proof (i) is a mere reformulation of the definition.

(ii) → is a bit tricky. We introduce a bound on the product yz, and do wf -
induction on the bound. Put ϕ(w) = ∀yz ≤ w(x|yz→ x|y ∨ x|z). We now show
∀w(∀ν < wϕ(v)→ ϕ(w)).

Let ∀v < wϕ(v) and assume¬ϕ(w), i.e. there are y, z≤w such that x|yz,¬ x|y,

¬ x|z. We will “lower” the y such that the w is also lowered. Since ¬ x|y,¬ x|z,
we have z �= 0. Should y ≥ x, then we may replace it by y = rem(x, y) and carry on
the argument. So let y < x. Now we once more get the remainder, x = ay + b with
b < y. We consider b= 0 and b > 0.

If b= 0, then x = ay; hence y = 1∨ y = x. If y = 1, then x|z. Contradiction.
If y = x then x|y. Contradiction.
Now if b > 0, then bz= (x−ay)z= xz−ayz. Since x|yz, we get x|bz. Observe

that bz < yz < w, so we have a contradiction with ∀v < wϕ(v). Hence by RAA we
have established the required statement.

For ← we only have to apply the established facts about divisibility. �
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Can we prove in Peano arithmetic that there are any primes? Yes, for example
PA � ∀x(x > 1→∃y(Prime(y)∧ y|x).

Proof Observe that ∃y(y > 1∧ y|x). By the LNP there is a least such y:

∃y(
y > 1∧ y|x ∧ ∀z < y(z > 1→¬ z|y)

)
.

Now it is easy to show that this minimal y is a prime.
Primes and exponents are most useful for coding finite sequences of natural num-

bers, and hence for coding in general. There are many more codings, and some of
them are more realistic in the sense that they have a lower complexity. For our pur-
pose, however, primes and exponents will do.

As we have seen, we can code a finite sequence (n0, . . . , nk−1) as the number
2n0+1 · 3n1+1 . . . p

nk−1+1
k−1 .

We will introduce some auxiliary predicates.

Definition 8.4.10 (Successive Primes) Succprimes(x, y) := x < y ∧ Prime(x) ∧
Prime(y) ∧ ∀z(x < z < y→¬Prime(z)).

The next step is to define the sequence of prime numbers 2,3,5, . . . , pn, . . . . The
basic trick here is that we consider all successive primes with ascending exponents:
20,31,52,73, . . . , px

x . We form the product and then pick the last factor.

Definition 8.4.11 (The xth Prime Number, px ) px = y := ∃z(¬2|z ∧ ∀v < y∀u≤
y(Succprime(v,u)→∀w < z(vw|z→ uw+1|z))∧ yx |z∧¬ yx+1|z).

Observe that, as the definition yields a function, we have to show the following.

Lemma 8.4.12 � ∃z(¬2|z ∧ ∀v < y0∀u≤ y0(Succprime(v,u)→∀w < z(vw|z→
uw+1|z)) ∧ yx

0 |z ∧ ¬ yx+1
0 |z) ∧ ∃z(¬2|z ∧ ∀v < y1∀u ≤ y1(Succprime(v,u) →

∀w < z(vw|z→ uw+1|z))∧ yx
1 |z∧¬ yx+1

1 |z)→ y0 = y1.

The above definition just mimics the informal description. Note that we can
bound the existential quantifier as ∃z < yx2

. We have now justified the notation
of sequence numbers as products of the form

p0
n0+1 · p1

n1+1 · · · · · pk−1
nk−1+1.

The reader should check that according to the definition p0 = 2. The decoding can
also be defined. In general one can define the power of a prime factor.

Definition 8.4.13 (Decoding) (z)k = v := pv+1
k |z∧¬pv+2

k |z.

The length of a coded sequence can also be extracted from the code.

Definition 8.4.14 (Length) lth(z)= x := px |z∧ ∀y < z(py |z→ y < x).
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Lemma 8.4.15 � Seq(z)→ (lth(z)= x↔ (px |z∧¬px+1|z)).

We define separately the coding of the empty sequence: 〈 〉 := 1.
The coding of the sequence (x0, . . . , xn−1) is denoted by 〈x0, . . . , xn−1〉.
Operations like concatenation and restriction of coded sequences can be defined

such that

〈x0 . . . xn−1〉 ∗ 〈y0 . . . ym−1〉 = 〈x0, . . . , xn−1, y0, . . . , ym−1〉
〈x0 . . . xn − 1〉|m= 〈x0 . . . xm − 1〉,

where m ≤ n. (Warning: here | is used for the restriction relation, do not confuse
with divisibility.)

The tail of a sequence is defined as follows:

tail(y)= z↔ (∃x(
y = 〈x〉 ∗ z

)∨ (
lth(y)= 0∧ z= 0

))
.

Closed terms of PA can be evaluated in PA.

Lemma 8.4.16 For any closed term t there is a number n such that � t = n.

Proof External induction on t , cf. Lemma 3.3.3. Observe that n is uniquely deter-
mined. �

Corollary 8.4.17 N |� t1 = t2 ⇒� t1 = t2 for closed t1, t2.

Gödel’s theorem will show that in general “true in the standard model” (we will
from now on just say “true”) and provable in PA are not the same. However for a
class of simple sentences this is correct.

Definition 8.4.18

(i) The class Δ0 of formulas is inductively defined by:

ϕ ∈Δ0 for atomic ϕ

ϕ,ϕ ∈Δ0 ⇒¬ϕ,ϕ ∧ψ,ϕ ∨ψ,ϕ→ψ ∈Δ0
ϕ ∈Δ0 ⇒∀x < yϕ,∃x < yϕ ∈Δ0.

(ii) The class Σ1 is given by:

ϕ,¬ϕ ∈Σ1 for atomic ϕ

ϕ,ψ ∈Σ1 ⇒ ϕ ∨ψ,ϕ ∧ψ ∈Σ1
ϕ ∈Σ1 ⇒∀x < yϕ,∃x < yϕ,∃xϕ ∈Σ1.

A formula is called strict Σ1 if it is of the form ∃(xϕ((x), where ϕ is Δ0.

We will call formulas in the classes Δ0 and Σ1, Δ0,Σ1-formulas respectively.
Formulas, provably equivalent to Σ1-formulas, will also be called Σ1-formulas.

For Σ1-formulas we have that “true = provable”.

Lemma 8.4.19 � ϕ or � ¬ϕ, for Δ0-sentences ϕ.
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Proof Induction on ϕ.
(i) ϕ atomic. If ϕ ≡ t1 = t2 and t1 = t2 is true, see Corollary 8.4.17.
If t1 = t2 is false, then t1 = n and t2 =m, where, say, n=m+ k with k > 0. Now

assume (in PA) t1 = t2, then m=m+ k. By Lemma 8.4.2 we get 0= k. But since
k = S(l) for some l, we obtain a contradiction. Hence � ¬t1 = t2.

(ii) The induction cases are obvious. For ∀x < tϕ(x), where t is a closed term,
use the identity ∀x < nϕ(x)↔ ϕ(0)∧ · · · ∧ ϕ(n− 1). Similarly for ∃x < tϕ(x). �

Theorem 8.4.20 (Σ1-Completeness) |�ϕ⇔ PA � ϕ, for Σ1 sentences ϕ.

Proof Since the truth of ∃xϕ(x) comes to the truth of ϕ(n) for some n, we may
apply the above lemma. �

8.5 Representability

In this section we will give the formalization of all this in PA, i.e. we will show
that definable predicates exist corresponding with the predicates introduced above
(in the standard model)—and that their properties are provable.

Definition 8.5.1 (Representability)

• A formula ϕ(x0, . . . , xn−1, y) represents an n-ary function f if for all k0, . . . , kn−1

f (k0, . . . , kn−1)= p ⇒ �∀y(
ϕ(k̄0, . . . , k̄n−1, y)↔ y = p̄

)

• A formula ϕ(x0, . . . , xn−1) represents a predicate P if for all k0, . . . , kn−1

P(k0, . . . , kn−1) ⇒ � ϕ(k̄0, . . . , k̄n−1)

and

¬P(k1, . . . , kn) ⇒ �¬ϕ(k̄0, . . . , k̄n−1)

• A term t (x0, . . . , xn−1) represents f if for all k0, . . . , kn−1

f (k0, . . . , kn−1)= p ⇒ � t (k̄0, . . . , k̄n−1)= p̄.

Lemma 8.5.2 If f is representable by a term, then f is representable by a formula.

Proof Let f be represented by t . Let f (k)= p. Then � t (k̄)= p̄. Now define the
formula ϕ((x, y) := t ((x)= y. Then we have � ϕ(k̄, p̄), and hence p̄ = y→ ϕ(k̄, y).
This proves � ϕ(k̄, y)↔ p̄ = y. �

Sometimes it is convenient to split the representability of functions into two
clauses.

Lemma 8.5.3 A k-ary function is representable by ϕ iff

f (n0 − nk−1)=m ⇒ � ϕ(n0, . . . , nk−1, m̄) and � ∃!zϕ(n0 . . . nk−1, z).
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Proof Immediate. Note that the last clause can be replaced by � ϕ(n0 . . . nk−1, z)→
z= m̄. �

The basic functions of arithmetic have their obvious representing terms. How-
ever, quite simple functions cannot be represented by terms. For example, the sigma
function is represented by ϕ(x, y) := (x = 0 ∧ y = 0) ∨ (¬x = 0 ∧ y = 1), but not
by a term. However we can easily show � ∀x∃!yϕ(x, y), and therefore we could
conservatively add the sg to PA (cf. Theorem 4.4.6). Note that quite a number of
useful predicates and functions have Δ0-formulas as a representation.

Lemma 8.5.4 P is representable⇔ KP is representable.

Proof Let ϕ((x) represent P . Define ψ((x, y) = (ϕ((x) ∧ (y = 1)) ∨ (¬ϕ((x) ∧
(y = 0)). Then ψ represents KP , because if KP (k)= 1, then P(k), so � ϕ(k̄) and
�ψ(k̄, y)↔ (y = 1), and if KP (k)= 0, then ¬P(k), so � ¬ϕ(k̄) and �ψ(k̄, y)↔
(y = 0). Conversely, let ψ((x, y) represent KP . Define ϕ((x) :=ψ((x,1). Then ϕ rep-
resents P . �

There is a large class of representable functions; it includes the primitive recur-
sive functions.

Theorem 8.5.5 The primitive recursive functions are representable.

Proof Induction on the definition of primitive recursive function. It is simple to
show that the initial functions are representable. The constant function Ck

m is rep-
resented by the term m̄, the successor function S is represented by x + 1 and the
projection function P k

i is represented by xi .
The representable functions are closed under substitution and primitive recursion.

We will indicate the proof for the closure under primitive recursion.
Consider

{
f ((x,0)= g((x)

f ((x, y + 1)= h(f ((x, y), (x, y)

g is represented by ϕ, h is represented by ψ :

g((n)=m ⇒
{� ϕ((n,m) and
� ϕ((n,y)→ y =m

h(p, (n,q)=m ⇒
{�ψ(p, (n,q,m) and
�ψ(p, (n,q, y)→ y =m.

Claim f is represented by σ((x, y, z), which is mimicking ∃w ∈ Seq(lth(w) =
y + 1∧ ((w)0 = g((x)∧ ∀i ≤ y((w)i+1 = h((w)i, (x, i)∧ z= (w)y))).
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σ((x, y, z) := ∃w ∈ Seq(lth(w)= y + 1∧ ϕ
((x, (w)0

)

∧ ∀i ≤ y
(
ψ

(
(w)i, (x, i, (w)i+1

)∧ z= (w)y
)
.

Now let f ((n,p)=m, then
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f ((n,0)= g((n)= a0
f ((n,1)= h(f ((n,0), (n,0)= a1
f ((n,2)= h(f ((n,1), (n,1)= a2

...

f ((n,p)= h(f ((n,p− 1), (n,p− 1)= ap =m.

Put w = 〈a0, . . . , ap〉; note that lth(w)= p+ 1.

g((n)= f ((n,0)= a0 ⇒ � ϕ((n,a0)

f ((n,1)= a1 ⇒ �ψ(a0, (n,0, a1)

...

f ((n,p)= ap ⇒ �ψ(ap−1, (n,p− 1, ap).

Therefore we have � lth(w)= p+1∧ϕ((n,a0)∧ψ(a0, (n,0, a1)∧ · · ·∧ψ(ap−1, (n,

p− 1, ap)∧ (w)p =m and hence � σ((n,p,m).
Now we have to prove the second part: � σ((n,p, z)→ z=m. We prove this by

induction on p.
(1) p = 0. Observe that � σ((n,0, z)↔ ϕ((n, z), and since ϕ represents g, we get

� ϕ((n, z)→ z=m.
(2) p = q + 1. Induction hypothesis: � σ((n,q, z) → z = f ((n,q)(= m)

σ((n,q + 1, z) ⇔ ∃w ∈ Seq(lth(w) = q + 2 ∧ ϕ((n, (w)0) ∧ ∀i ≤ y(ψ((w)i, (n, i,

(w)i+1)∧ z= (w)q+1)).
We now see that � σ((n,q + 1, z)→∃u(σ ((n,q,u)∧ψ(u, (n,q, z).
Using the induction hypothesis we get � σ((n,q + 1, z) → ∃u(u = f ((n,q) ∧

ψ(u, (n,q, z)) and hence � σ((n,q + 1, z)→ψ(f ((n,q), (n,q, z).
Thus by the property of ψ : � σ((n,q + 1, z)→ z= f ((n,q + 1).
There is now one more step to show that all recursive functions are representable,

for we have seen that all recursive functions can be obtained by a single minimiza-
tion from a primitive recursive predicate. �

Theorem 8.5.6 All recursive functions are representable.

Proof We show that the representable functions are closed under minimalization.
Since representability for predicates is equivalent to representability for functions,
we consider the case f ((x)= μyP ((x, y) for a predicate P represented by ϕ, where
∀(x∃yP ((x, y).

Claim ψ((x, y) := ϕ((x, y)∧ ∀z < y¬ϕ((x, z) represents μyP ((x, y).
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m= μyP ((n,y) ⇒ P((n,m)∧¬P((n,0)∧ · · · ∧ ¬P((n,m− 1)

⇒ � ϕ((n,m)∧¬ϕ((n,0)∧ · · · ∧ ¬ϕ((n,m− 1)

⇒ � ϕ((n,m)∧ ∀z < m¬ϕ((n, z)

⇒ �ψ((n,m).

Now let ϕ((n,y) be given, then we have ϕ((n,y) ∧ ∀z < y¬ϕ((n, z). This imme-
diately yields m≥ y. Conversely, since ϕ((n,m), we see that m≤ y. Hence y =m.
This informal argument is straightforwardly formalized as � ϕ((n,y)→ y =m. �

We have established that recursive sets are representable. One might perhaps
hope that this can be extended to recursively enumerable sets. This happens not to
be the case. We will consider the RE sets now.

Definition 8.5.7 R((x) is semi-representable in T if R((n)⇔ T � ϕ((n) for some
ϕ((x).

Theorem 8.5.8 R is semi-representable⇔ R is recursively enumerable.

For the proof see p. 250.

Corollary 8.5.9 R is representable⇔ R is recursive.

Exercises

1. Show
� x + y = 0→ x = 0∧ y = 0
� xy = 0→ x = 0∨ y = 0
� xy = 1→ x = 1∧ y = 1
� xy = 1→ y = 0∨ x = 1
� xy = 0→ x = 0∧ y �= 0
� x + y = 1→ (x = 0∧ y = 1)∨ (x = 1∧ y = 0).

2. Show that all Σ1-formulas are equivalent to prenex formulas with the existential
quantifiers preceding the bounded universal ones (hint: consider the combination
∀x < t∃yϕ(x, y), this yields a coded sequence z such that ∀x < tϕ(x, (z)x)).
That is in PA Σ1-formulas are equivalent to strict Σ1-formulas.

3. Show that one can contract similar quantifiers, e.g. ∀x∀yϕ(x, y) ↔
∀zϕ((z)0, (z)1).

8.6 Derivability

In this section we define a coding for a recursively enumerable predicate Thm(x),
that says “x is a theorem”. Because of the minimization and upper bounds on quan-
tifiers, all predicates and functions defined along the way are primitive recursive.
Observe that we are back in recursion theory, that is in informal arithmetic.
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Coding of the Syntax The function �−� codes the syntax. For the alphabet, it is
given by

∧ → ∀ 0 S + · exp = ( ) xi

2 3 5 7 11 13 17 19 23 29 31 p11+i

Next we code the terms:

�f (t1, . . . , tn)� :=
〈
�f �,�(�,�t1�, . . . ,�tn�,�)�

〉

Finally we code the formulas. Note that {∧,→,∀} is a functionally complete set, so
the remaining connectives can be defined.

�(t = s)� := 〈
�(�,�t�,�=�,�s�,�)�〉

�(ϕ ∧ψ)� := 〈
�(�,�ϕ�,�∧�,�ψ�,�)�

〉

�(ϕ→ψ)� := 〈
�(�,�ϕ�,�→�,�ψ�,�)�

〉

�(∀xiϕ)� := 〈
�(�,�∀�,�xi�,�ϕ�,�)�

〉

Const(x) and Var(x) characterize the codes of constants and variables, respectively.

Const(x) := x = �0�
Var(x) := ∃i ≤ x(p11+i = x)

Fnc1(x) := x = �S�
Fnc2(x) := x = �+�∨ x = �·�∨ x = �exp�

Term(x)—x is a term—and Form(x)—x is a formula—are primitive recursive pred-
icates according to the primitive recursive version of the recursion theorem. Note
that we will code according to the standard function notation, e.g. +(x, y) instead
of x + y.

Term(x) := Const(x)∨ Var(x)

∨ (
Seq(x)∧ lth(x)= 4∧ Fnc1

(
(x)0

)

∧ (x)1 = �
(
�∧ Term

(
(x)2

)∧ (x)3 = �
)
�
)

∨ (
Seq(x)∧ lth(x)= 5∧ Fnc2

(
(x)0

)

∧ (x)1 = �
(
�∧ Term

(
(x)2

) ∧ Term
(
(x)3

)∧ (x)4 = �
)
�
)

Form(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Seq(x)∧ lth(x)= 5∧ (x)0 = �
(
�∧ (x)4 = �

)
�

∧ [(
Term

(
(x)1

)∧ (x)2 = �=�∧ Term
(
(x)3

))

∨ (
Form

(
(x)1

)∧ (x)2 = �∧�∧ Form
(
(x)3

))

∨ (
Form

(
(x)1

)∧ (x)2 = �→�∧ Form
(
(x)3

))

∨ (
(x)1 = �∀�∧ Var

(
(x)2

)∧ Form
(
(x)3

))]

All kinds of syntactical notions can be coded in primitive recursive predicates,
for example Free(x, y)—x is a free variable in y, and FreeFor(x, y, z)—x is free
for y in z.
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Free(x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Var(x)∧ Term(y)¬Const(y)

∧ (
Var(y)→ x = y

)

∧ (
Fnc1

(
(y)0

)→ Free
(
x, (y)2

))

∧ (
Fnc2

(
(y)0

)→ (
Free

(
x, (y)2

)∨ Free
(
x, (y)3

))))

or(
Var(x)∧ Form(y)

∧ (
(y)1 �= �∀�→ (

Free
(
x, (y)1

)∨ Free
(
x, (y)3

)))

∧ (
(y)1 = �∀�→ (

x �= (y)2 ∧ Free
(
x, (y)4

))))

FreeFor(x, y, z) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Term(x)∧ Var(y)∧ Form(z)

∧ [(
(z)2 = �=�)

∨ (
(z)1 �= �∀�∧ FreeFor

(
x, y, (z)1

)∧ FreeFor
(
x, y, (z)3

)

∨ (
(z)1 = �∀�∧¬Free

(
(z)2, x

)

∧ (
Free(y, z)→ (

Free
(
(z)2, x

)∧ Free
(
x, y, (z)3

))))]

) Having coded these predicates, we can define a substitution operator Sub such that
Sub(�ϕ�,�x�,�t�)= �ϕ[t/x]�.

Sub(x, y, z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if Const(x)

x if Var(x)∧ x �= y

z if Var(x)∧ x = y

〈(x)0,�(�,Sub((x)2, y, z),�)�〉 if Term(x)∧ Fnc1((x)0)

〈(x)0,�(�,Sub((x)2, y, z),Sub((x)3, y, z),�)�〉
if Term(x)∧ Fnc2((x)0)

〈�(�,Sub((x)1, y, z), (x)2,Sub((x)3, y, z),�)�〉
if Form(x)∧ FreeFor(x, y, z)∧ (x)0 �= �∀�

〈�(�, (x)1, (x)2,Sub((x)3, y, z),�)�〉
if Form(x)∧ FreeFor(z, y, x)∧ (x)0 = �∀�

0 else.

Clearly Sub is primitive recursive (course-of-value recursion).

Coding of Derivability Our next step is to obtain a primitive recursive predicate
Der that says that x is a derivation with hypotheses y0, . . . , ylth(y)−1 and conclu-
sion z. Before that we give a coding of derivations.

Initial derivation

[ϕ]= 〈0, ϕ〉
∧I

⎡

⎣

D1 D2
ϕ ψ

(ϕ ∧ψ)

⎤

⎦=
〈

〈0,�∧�〉,
[
D1
ϕ

]

,

[
D2
ψ

]

,�(ϕ ∧ψ)�
〉
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∧E
⎡

⎣

D

(ϕ ∧ψ)

ϕ

⎤

⎦=
〈

〈1,�∧�〉,
[

D

(ϕ ∧ψ)

]

,�ϕ�
〉

→ I
⎡

⎢
⎢
⎣

ϕ

D

ψ

(ϕ→ψ)

⎤

⎥
⎥
⎦=

〈

〈0,�→�〉,
[
D

ψ

]

,�(ϕ→ψ)�
〉

→ E
⎡

⎣

D1 D2
ϕ (ϕ→ψ)

ψ

⎤

⎦=
〈

〈1,�→�〉,
[
D1
ϕ

]

,

[
D2

(ϕ→ψ)

]

,�ψ�
〉

RAA
⎡

⎢
⎢
⎣

(ϕ→⊥)

D

⊥
ϕ

⎤

⎥
⎥
⎦=

〈

〈1,�⊥�〉,
[
D

⊥
]

,�ϕ�
〉

∀I
⎡

⎣

D

ϕ

(∀xϕ)

⎤

⎦=
〈

〈0,�∀�〉,
[
D

ϕ

]

,�(∀xϕ)�
〉

∀E
⎡

⎣

D

(∀xϕ)

ϕ[t/x]

⎤

⎦=
〈

〈1,�∀�〉,
[

D

(∀xϕ)

]

,�ϕ[t/x]�
〉

For Der we need a device to cancel hypotheses from a derivation. We consider a
sequence y of (codes of) hypotheses and successively delete items u.

Cancel(u, y) :=
⎧
⎨

⎩

y if lth(y)= 0
Cancel(u, tail(y)) if (y)0 = u

〈(y)0,Cancel(u, tail(y))〉 if (y)0 �= u.

Here tail(y)= z⇔ lth(y) > 0∧ ∃x(y = 〈x〉 ∗ z)∨ (lth(y)= 0∧ z= 0).
Now we can code Der, where Der(x, y, z) stands for “x is the code of a deriva-

tion of a formula with code z from a coded sequence of hypotheses y”. In the defi-
nition of Der ⊥ is defined as (0= 1).

Der(x, y, z) := Form(z)∧
lth(y)−1∧

i=0

Form
(
(i)v

)

∧
�
(∃i < lth(y)(z= (y)i ∧ x = 〈0, z〉))
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or
(∃x1x2 ≤ x∃y1y2 ≤ x∃z1z2 ≤ x(y = y1 ∗ y2

∧Der(x1, y1, z1)∧Der(x2, y2, z2)

∧ z= 〈�(�, z1,�∧�, z2,�)�〉 ∧ x = 〈〈0,�∧�〉, x1, x2, z〉)
)

or
(∃u≤ x∃x1 ≤ x∃z1 ≤ x(Der(x1, y, z1)

∧ (z1 = 〈�(�, z,�∧�, u,�)�〉 ∨ (z1 = 〈�(�, u,�∧�, z,�)�〉)
∧ x = 〈〈1,�∧�〉, x1, z〉)

)

or
(∃x1 ≤ x∃y1 ≤ x∃u≤ x∃z1 ≤ x(y = Cancel(u, y1)

∨ y = y1)∧Der(x1, y1, z1)∧ z= 〈�(�, u,�→�, z1,�)�〉
∧ x = 〈〈0,�→�〉, x1, z1〉

)

or
(∃x1x2 ≤ x∃y1y2 ≤ x∃z1z2 ≤ x(y = y1 ∗ y2

∧Der(x1, y1, z1)∧Der(x2, y2, z2)

∧ z2 = 〈�(�, z1,�→�, z,�)�〉 ∧ x = 〈〈1,�→�〉, x1, x2, z〉)
)

or
(

∃x1 ≤ x∃z1 ≤ x∃v ≤ x(Der(x1, y, z1)∧ Var(v)

∧
lth(y)−1∧

i=0

¬Free(v, (y)i)∧ z= 〈�∀�, v,�(�, z1,�)�〉

∧ x = 〈〈0,�∀�〉, x1, z1〉)
)

or
(∃t ≤ x∃v ≤ x∃x1 ≤ x∃z1 ≤ x(Var(v)∧ Term(t)

∧ Freefor(t, v, z1)∧ z= Sub(z1, v, t)

∧Der(x1, y, 〈�∀�, v,�(�, z1,�)�〉)∧ x = 〈〈1,�∀�〉, y, z〉))

or
(∃x1 ≤ x∃y1 ≤ x∃z1 ≤ x(Der(x1, y1, 〈�⊥�〉)
∧ y = Cancel(〈z,�→�,�⊥�〉, y1)∧ x = 〈〈1,�⊥�〉, x1, z1〉)

)
�

.

Coding of Provability The axioms of Peano arithmetic are listed on p. 236. How-
ever, for the purpose of coding derivability we have to be precise; we must include
the axioms for identity. They are the usual ones (see Sect. 3.6 and Lemma 3.10.2),
including the “congruence axioms” for the operations:
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(x1 = y1 ∧ x2 = y2)→
(
S(x1)= S(y1)∧ x1 + x2 = y1 + y2

∧ x1 · x2 = y1 · y2 ∧ x
x2
1 = y

y2
1

)
.

These axioms can easily be coded and put together in a primitive recursive pred-
icate Ax(x)—x is an axiom. The provability predicate Prov(x, z)—x is a derivation
of z from the axioms of PA—follows immediately.

Prov(x, z) := ∃y ≤ x

(

Der(x, y, z)∧
lth(y)−1∧

i=0

Ax
(
(y)i

)
)

.

Finally we can define Thm(x)—x is a theorem. Thm is recursively enumerable.

Thm(z) := ∃xProv(x, z).

Having at our disposition the provability predicate, which is Σ0
1 , we can finish

the proof of “semi-representable = RE” (Theorem 8.5.8).

Proof For convenience let R be a unary recursively enumerable set.
⇒: R is semi-representable by ϕ. R(n)⇔ � ϕ(n)⇔ ∃yProv (�ϕ(n)�, y). Note

that �ϕ(n)� is a recursive function of n. Prov is primitive recursive, so R is recur-
sively enumerable.
⇐: R is recursively enumerable ⇒ R(n) = ∃xP (n, x) for a primitive recur-

sive P . P(n,m) ⇔ � ϕ(n,m) for some ϕ. R(n) ⇔ P(n,m) for some m ⇔ �
ϕ(n,m) for some m⇒ � ∃yϕ(n, y). Therefore we also have � ∃yϕ(n, y)⇒R(n).
So ∃yϕ(n, y) semi-represents R. �

8.7 Incompleteness

Theorem 8.7.1 (Fixpoint Theorem) For each formula ϕ(x) (with FV(ϕ) = {x})
there exists a sentence ψ such that � ϕ(�ψ�)↔ψ .

Proof Popular version: consider a simplified substitution function s(x, y) which is
the old substitution function for a fixed variable: s(x, y) = Sub(x,�x0�, y). Then
define θ(x) := ϕ(s(x, x)). Let m := �θ(x)�, then put ψ := θ(m). Note that ψ ↔
θ(m)↔ ϕ(s(m,m))↔ ϕ(s(�θ(x)�,m))↔ ϕ(�θ(m)�)↔ ϕ(�ψ�).

This argument would work if there were a function (or term) for s in the language.
This could be done by extending the language with sufficiently many functions (“all
primitive recursive functions” surely will do). Now we have to use representing
formulas.

Formal version: let σ(x, y, z) represent the primitive recursive function s(x, y).
Now suppose θ(x) := ∃y(ϕ(y)∧ σ(x, x, y)),m= �θ(x)� and ψ = θ(m). Then

ψ ↔ θ(m)↔∃y(
ϕ(y)∧ σ(m,m,y)

)
(8.1)

� ∀y(
σ(m,m,y)↔ y = s(m,m)

)

� ∀y(
σ(m,m,y)↔ y = �θ(m)�

)
(8.2)
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By logic (1) and (2) give ψ ↔ ∃y(ϕ(y)∧ y = �θ(m)�) so ψ ↔ ϕ(�θ(m)�) ↔
ϕ(�ψ�). �

Definition 8.7.2

(i) PA (or any other theory T of arithmetic) is called ω-complete if � ∃xϕ(x)⇒
� ϕ(n) for some n ∈N.

(ii) T is ω-consistent if there is no ϕ such that (� ∃xϕ(x) and � ¬ϕ(n) for all n)
for all ϕ.

Theorem 8.7.3 (Gödel’s First Incompleteness Theorem) If PA is ω-consistent then
PA is incomplete.

Proof Consider the predicate Prov (x, y) represented by the formula Prov (x, y). Let
Thm (x) := ∃yProv (x, y). Apply the Fixpoint Theorem to ¬Thm (x): there exists a
ϕ such that � ϕ↔¬Thm (�ϕ�). ϕ, the so-called Gödel sentence, says in PA: “I am
not provable.”

Claim 1 If � ϕ then PA is inconsistent.

Proof � ϕ ⇒ there is an n such that Prov (�ϕ�, n), hence � Prov (�ϕ�, n) ⇒
� ∃yProv (�ϕ�, y)⇒� Thm (�ϕ�)⇒�¬ϕ. Thus PA is inconsistent. �

Claim 2 If � ¬ϕ then PA is ω-inconsistent.

Proof � ¬ϕ ⇒ � Thm (�ϕ�) ⇒ � ∃xProv (�ϕ�, x). Suppose PA is ω-consistent;
since ω-consistency implies consistency, we have � ϕ and therefore ¬Prov (�ϕ�, n)

for all n. Hence � ¬Prov (�ϕ�, n) for all n. Contradiction. �

Remarks In the foregoing we made use of the representability of the provability
predicate, which in turn depended on the representability of all recursive functions
and predicates.

For the representability of Prov (x, y), the set of axioms has to be recursively
enumerable. Thus Gödel’s First Incompleteness Theorem holds for all recursively
enumerable theories in which the recursive functions are representable. Therefore
one cannot make PA complete by adding the Gödel sentence, the result would again
be incomplete.

In the standard model N either ϕ, or¬ϕ is true. The definition enables us to deter-
mine which one. Notice that the axioms of PA are true in N, so � ϕ↔¬Thm (�ϕ�).
Suppose N � Thm (�ϕ�), then N � ∃xProv (�ϕ�, x) ⇔ N � Prov (�ϕ�, n) for some
n⇔ � Prov (�ϕ�, n) for some n⇔� ϕ ⇒� ¬Thm (�ϕ�)⇒ N � ¬Thm (�ϕ�). Con-
tradiction. Thus ϕ is true in N. This is usually expressed as “there is a true statement
of arithmetic which is not provable”.
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Remarks It is generally accepted that PA is a true theory, that is N is a model of PA,
and so the conditions on Gödel’s theorem seem to be superfluous. However, the fact
that PA is a true theory is based on a semantical argument. The refinement consists
in considering arbitrary theories, without the use of semantics.

The incompleteness theorem can be freed of the ω-consistency condition. For
that purpose we introduce Rosser’s predicate:

Ros (x) := ∃y(
Prov (neg (x), y)∧ ∀z < y¬Prov (x, z)

)
,

with neg(�ϕ�) = �¬ϕ�. The predicate following the quantifier is represented by
Prov (neg (x), y) ∧ ∀z < y¬Prov (x, z). An application of the Fixpoint Theorem
yields a ψ such that

�ψ ↔∃y[
Prov

(�¬ψ�, y
)∧ ∀z < y¬Prov

(�ψ�, z
)]

. (8.3)

Claim PA is consistent ⇒ � ψ and �¬ψ .

Proof (i) Suppose �ψ , then there exists an n such that Prov (�ψ�, n), so

� Prov
(�ψ�, n

)
. (8.4)

From (8.3) and (8.4) it follows that � ∃y < nProv (�¬ψ�, y), i.e. � Prov (�¬ψ�,0)

∨ · · · ∨ Prov (�¬ψ�, n− 1). Note that Prov is Δ0, thus the following holds:
� σ ∨ τ ⇔ � σ or � τ , so � Prov (�¬ψ�,0) or . . . or � Prov (�¬ψ�, n− 1) hence
Prov (�¬ψ�, i) for some i < n⇒ �¬ψ ⇒ PA is inconsistent.

(ii) Suppose � ¬ψ , then � ∀y[Prov (�¬ψ�, y) → ∃z < yProv (�ψ�, z)] also
� ¬ψ ⇒ Prov (�¬ψ�, n) for some n⇒ � Prov (�¬ψ�, n) for some n⇒ � ∃z <

nProv (�ψ�, z)⇒ (as in the above) Prov (�ψ�, k) for some k < n, so � ψ ⇒ PA is
inconsistent. �

We have seen that truth in N does not necessarily imply provability in PA (or any
other (recursively enumerable) axiomatizable extension). However, we have seen
that PA is Σ0

1 -complete, so truth and provability still coincide for simple statements.

Definition 8.7.4 A theory T (in the language of PA) is called Σ0
1 -sound if T � ϕ⇒

N � ϕ for Σ0
1 -sentences ϕ.

We will not go into the intriguing questions of the foundations or philosophy of
mathematics and logic. Accepting the fact that the standard model N is a model of
PA, we get consistency, soundness and Σ0

1 -soundness for free. It is an old tradition
in proof theory to weaken assumptions as much as possible, so it makes sense to see
what one can do without any semantic notions. The interested reader is referred to
the literature.

We now present an alternative proof of the incompleteness theorem. Here we use
the fact that PA is Σ0

1 -sound.
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Theorem 8.7.5 PA is incomplete.

Consider an RE set X which is not recursive. It is semi-represented by a Σ0
1 -

formula ϕ(x). Let Y = {n|PA � ϕ(n)}.
By Σ0

1 -completeness we get n ∈ X⇒ PA � ϕ(n). Since Σ0
1 -soundness implies

consistence, we also get PA � ¬ϕ(n) ⇒ n �∈ X, hence Y ⊆ Xc. The provability
predicate tells us that Y is RE. Now Xc is not RE, so there is a number k with
k ∈ (X ∪ Y)c . For this number k we know that PA �� ¬ϕ(k) and also PA �� ϕ(k), as
PA � ϕ(k) would imply by Σ0

1 -soundness that k ∈X.
As a result we have established that ¬ϕ(k) is true but not provable in PA, i.e. PA

is incomplete.
We almost immediately get the undecidability of PA.

Theorem 8.7.6 PA is undecidable.

Proof Consider the same set X = {n|PA � ϕ(n)} as above. If PA were decidable,
the set XS would be recursive. Hence PA is undecidable. �

Note that we get the same result for any axiomatizable Σ0
1 -sound extension of

PA. For stronger results see Smoryński’s logical number theory that f with f (n)=
�ϕ

(
n
)� is primitive recursive.

Remarks The Gödel sentence γ “I am not provable” is the negation of a strict Σ0
1 -

sentence (a so-called Π0
1 -sentence). Its negation cannot be true (why?). So PA+¬γ

is not Σ0
1 -sound.

We will now present another approach to the undecidability of arithmetic, based
on effectively inseparable sets.

Definition 8.7.7 Let ϕ and ψ be existential formulas: ϕ = ∃xϕ′ and ψ = ∃xψ ′. The
witness comparison formulas for ϕ and ψ are given by:

ϕ ≤ψ := ∃x(
ϕ′(x)∧ ∀y < x¬ψ ′(y)

)

ϕ < ψ := ∃x(
ϕ′(x)∧ ∀y ≤ x¬ψ ′(y)

)
.

Lemma 8.7.8 (Informal Reduction Lemma) Let ϕ and ψ be strict Σ0
1 , ϕ1 := ϕ ≤ψ

and ψ1 :=ψ < ϕ. Then

(i) N � ϕ1 → ϕ

(ii) N � ψ1 →ψ

(iii) N � ϕ ∨ψ ↔ ϕ1 ∨ψ1

(iv) N �¬ (ϕ1 ∧ψ1).

Proof Immediate from the definition. �
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Lemma 8.7.9 (Formal Reduction Lemma) Let ϕ,ψ,ϕ1 and ψ1 be as above.

(i) � ϕ1 → ϕ

(ii) �ψ1 →ψ

(iii) N � ϕ1 ⇒ � ϕ1

(iv) N � ψ1 ⇒ �ψ1

(v) N � ϕ1 ⇒ �¬ψ1

(vi) N � ψ1 ⇒ �¬ϕ1

(vii) � ¬(ϕ1 ∧ψ1).

Proof (i)–(iv) are direct consequences of the definition and Σ0
1 -completeness.

(v) and (vi) are exercises in natural deduction (use ∀uv(u < v ∨ v ≤ u)) and (vii)
follows from (v) (or (vi)). �

Theorem 8.7.10 (Undecidability of PA) The relation ∃yProv (x, y) is not recur-
sive. Popular version: � is not decidable for PA.

Proof Consider two effectively inseparable recursively enumerable sets A and B

with strict Σ0
1 -defined formulas ϕ(x) and ψ(x). Define ϕ1(x) := ϕ(x)≤ ψ(x) and

ψ1(x) :=ψ(x) < ϕ(x).

Then n ∈A⇒ N � ϕ(n)∧¬ψ(n)

⇒ N � ϕ1(n)

⇒� ϕ1(n)

and n ∈ B ⇒ N � ψ(n)∧¬ϕ(n)

⇒ N � ψ1(n)

⇒�¬ϕ1(n).

Let Â = {n | � ϕ1(n)}, B̂ = {n | � ¬ϕ1(n)}, then A ⊆ Â and B ⊆ B̂ . PA is con-

sistent, so Â ∩ B̂ = ∅. Â is recursively enumerable, but because of the effective
inseparability of A and B not recursive. Suppose that {�σ� |� σ } is recursive, i.e.
X = {k | Form(k) ∧ ∃zProv (k, z)} is recursive. Consider f with f (n) = �ϕ1(n)�,
then {n | ∃zProv (�ϕ1(n)�, z)} is also recursive, i.e. Â is a recursive separator of A

and B . Contradiction. Thus X is not recursive. �

From the undecidability of PA we immediately get once more the incompleteness
theorem.

Corollary 8.7.11 PA is incomplete.

Proof (a) If PA were complete, then from the general theorem “complete axiomati-
zable theories are decidable” it would follow that PA was decidable.

(b) Because Â and B̂ are both recursively enumerable, there exists an n with

n /∈ Â∪ B̂ , i.e. � ϕ(n) and �¬ϕ(n). �
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Remark The above results are by no means optimal; one can represent the recursive
functions in considerably weaker systems, and hence prove their incompleteness.
There are a number of subsystems of PA which are finitely axiomatizable, for exam-
ple the Q of Raphael Robinson (cf. Smoryński, Logical number theory, p. 368 ff.),
which is incomplete and undecidable. Using this fact one easily

gets the following.

Corollary 8.7.12 (Church’s Theorem) Predicate logic is undecidable.

Proof Let {σ1, . . . , σn} be the axioms of Q, then σ1, . . . , σn � ϕ ⇔
� (σ1 ∧ · · · ∧ σn)→ ϕ. A decision method for predicate logic would thus provide
one for Q. �

Remark

(1) Since HA is a subsystem of PA the Gödel sentence γ is certainly independent
of HA. Therefore γ ∨¬γ is not a theorem of HA. For if HA � γ ∨¬γ , then by
the disjunction property for HA we would have HA � γ or HA � ¬γ , which
is impossible for the Gödel sentence. Hence we have a specific theorem of PA
which is not provable in HA.

(2) Since HA has the existence property, one can go through the first version of the
proof of the incompleteness theorem, while avoiding the use of ω-consistency.

Exercises

1. Show that f with f (n)= �t (n)� is primitive recursive.
2. Show that f with f (n)= �ϕ(n)� is primitive recursive.
3. Find out what ϕ→ ϕ ≤ ϕ means for a ϕ as above.
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Contraposition, 27
Converge, 116, 220
Conversion, 189, 191, 198

permutation, 200
Course of value recursion, 216
Craig, 46
Cut, 188

formula, 188
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Cut (cont.)
rank, 193, 202
segment, 201

Cut-off subtraction, 211

D
De Morgan’s laws, 21, 68
Decidability, 44, 119, 182
Decidable, 182, 185
Decidable theory, 103
Dedekind, 110, 209

cut, 153
finite, 150

Definable Skolem functions, 185
Definable subsets, 115
Definition by cases, 213, 221
Definition by recursion, 59
Δ0-formula, 241
Dense order, 118, 121
Densely ordered, 79
Derivability, 34, 38
Derivation, 31, 34
Diagonalization, 217, 218
Diagram, 113
Directed graph, 84
Discriminator, 219
Disjunction, 7, 15

property, 174, 204, 206, 255
Disjunctive normal form, 25
Distributivity, 21
Diverge, 220
Divisible torsion-free abelian groups, 118
Division ring, 82
DNS, 168
Double negation law, 21
Double negation shift, 168
Double negation translation, 181
Downward Skolem–Löwenheim theorem, 105,

117
Dual plane, 86
Dual Skolem form, 133
Duality mapping, 26
Duality principle, 81, 96
Dummett, 182
Dummy variables, 210

E
Edge, 84
Elementarily embeddable, 113
Elementarily equivalent, 112
Elementary embedding, 140
Elementary extension, 112
Elementary logic, 54
Elementary substructure, 112

Elimination rule, 29
Equality relation, 55, 172
Equivalence, 7, 17
Existence predicate, 218
Existence property, 174, 205, 206
Existential quantifier, 56
Existential sentence, 124
Expansion, 105
Explicit definition, 130
Extended language, 63
Extension, 98

by definition, 130

F
Factorial function, 211
Falsum, 7, 17
Fan, 120
Fibonacci sequence, 216
Field, 82, 180
Filter, 134
Filtration, 182
Finite, 116

axiomatizability, 107
intersection property, 135
models, 106

Finitely axiomatizable, 141
Fip, 135
First-order logic, 54
Fixed point theorem, 250
Forcing, 166
FORM, 57, 102
Formation sequence, 9
Formula, 57, 146
Free filter, 134
Free for, 62
Full model, 146
Functional completeness, 27
Functionally complete, 25
Functions, 54
FV , 59

G
Gentzen, 29, 187
Glivenko’s theorem, 164, 183
Gödel translation, 161
Gödel’s coding, 215
Graph, 84
Group, 80, 180

H
Henkin extension, 98
Henkin theory, 98
Herbrand model, 102
Herbrand universe, 102
Herbrand’s theorem, 133
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Heyting, 156, 175
-valued logic, 57
arithmetic, 181

Homomorphism, 111
Hypothesis, 30

I
I1, . . . , I4, 77
Idempotency, 21
Identification of variables, 210
Identity, 77, 93, 172

axioms, 77
relation, 55
rules, 93

Implication, 7, 16
Incompleteness theorem, 251, 253
Inconsistent, 40
Independence of premise principle, 167
Independent, 45
Index, 218, 219
Induction

principle, 8, 13
Induction axiom, 152
Induction schema, 83
Infinite, 116
Infinitesimals, 116
Initial functions, 209
Interpolant, 46
Interpolation theorem, 46
Interpretation, 65
Introduction rule, 29
Irreducible, 191
Isomorphism, 111

K
κ-categorical, 117
Kleene, 218

brackets, 220
Kleene, S.C., 222
Kolmogorov, 156
König’s lemma, 120
Kripke, 164

model, 164, 182, 185
semantics, 164

Kronecker, 156

L
L(A), 64
Language

extended, 63
of a similarity type, 56
of arithmetic, 82
of graphs, 83
of groups, 80

of identity, 78
of partial order, 78
of plane projective geometry, 80
of rings with unity, 81

Least number principle, 238
Lefschetz’ principle, 118
Leibniz-identity, 151
Length, 215
Lindenbaum, 99
Linear Kripke models, 182
Linear order, 176
Linearly ordered set, 79
LNP, 238
Los, 138
Los–Tarski, 126

M
Major premise, 188
Material implication, 6
Maximal

cut formula, 193
cut segment, 201

Maximally consistent, 41
Maximally consistent theory, 99, 100
Meta-language, 8
Meta-variable, 8
Minimization, 223

operator, 213
Minimum, 79
Minor premise, 188
Mod, 104
Model, 67

complete, 123
existence lemma, 97
of second-order logic, 149

Model existence lemma, 171
Modified Kripke model, 173
Monadic predicate calculus, 86
Monus, 211
Multigraph, 85

N
Natural deduction, 29, 86, 147
Negation, 7, 16
Negative

formula, 163
subformula, 75

Non-archimedean order, 114
Non-standard

model, 106
model of arithmetic, 114
numbers, 142
real numbers, 116
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Normal
derivation, 191
form, 191
form theorem, 226

Normalization, 33, 192
0-ary, 55

O
Occurrence, 12, 59
ω-consistent, 251
ω-complete, 251
Open formula, 60
Order of a track, 196
Ordered group, 142
Ordering sets, 109
Overspill lemma, 115

P
Parameters, 112, 191
Partial recursive function, 218
Partially ordered set, 79
Path, 120, 195
Peano structures, 82
Peirce’s law, 27
Permutation

conversion, 200
of variables, 211

Poset, 79
Positive

diagram, 113
subformula, 75

Prawitz, 188
Predecessor, 224

function, 211
Premise, 29
Prenex formula, 185
Prenex (normal) form, 73
Preservation under substructures, 126
Prime, 214

model, 124
theory, 169

Primitive recursion, 209, 224
Primitive recursive

function, 209, 210, 225
relation, 212

Principal model, 149
Principal ultrafilter, 134
Principle

of induction, 34
of mathematical induction, 83
of the excluded third, 29

Projective plane, 81
Proof by contradiction, 30

Proof-interpretation, 156
PROP, 7
Proper variable, 189, 190
Proposition, 7

symbol, 7
Provability predicate, 250

Q
Quantifier, 53

elimination, 121

R
RAA, 30
Rank, 12
Rank-induction principle, 13
Recursion, 10

theorem, 222
Recursive

function, 220
relation, 220

Reduces to, 191
Reduct, 105
Reductio ad absurdum rule, 30
Reduction sequence, 191
Relations, 54
Relativization, 74
Relativized quantifiers, 74
Representability, 242
RI1, . . . ,RI4, 93
Rieger–Nishimura lattice, 185
Rigid designators, 165
Ring, 82, 179
Rosser’s predicate, 252

S
Sm

n theorem, 221
Satisfaction relation, 66
Satisfiable, 67, 133
Scope, 57
Second-order structure, 146
Semantics, 64
Semi-representable, 245
SENT , 60
Sheffer stroke, 23, 27
Σ1-formula, 241
Σ0

1 -sound, 252
3, 218
Similarity type, 55, 56
Simultaneous substitution, 61
Size, 38
Skolem

axiom, 127
constant, 128
expansion, 128
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Skolem (cont.)
form, 131
function, 127
hull, 132

Smoryński, 176, 217, 225, 253, 255
Soundness, 38, 89

theorem, 168
st(a), 116
Standard

model, 83
model of arithmetic, 114
numbers, 83

Statman, 178
Strictly positive subformula, 204
Strong normalization, 207
Strong normalization property, 192
Structure, 54
Subformula property, 197, 203
Submodel, 112
Substitution, 18, 60, 209

operator, 38, 60
theorem, 19, 38, 72, 160

Substitution instance, 63
Substructure, 112

T
Tarski, 124
Tautology, 18
TERM, 56, 102
Term, 56
Term model, 102
TERMc , 60
Th, 105
Theory, 45, 98
Theory of

algebraically closed fields, 118, 120, 123
apartness, 176
densely ordered sets, 118, 120, 123, 124,

126
divisible torsion-free abelian groups, 118,

120
fields, 124
infinite sets, 118, 120, 134
linear order, 176

Torsion-free abelian groups, 109
Total function, 220
Totally ordered set, 79
Track, 195, 203

�, 37
Tree, 11
Tree Kripke model, 182
Truth, 38

table, 15
value, 15

Turing, 219
machine, 219

Turnstile, 34
Two-valued logic, 5
Type, 55

U
Ultrafilter, 134
Ultrapower, 139
Ultraproduct, 138
Unary relation, 55
Unbounded search, 223
Undecidability of PA, 253, 254
Undecidability of predicate logic, 255
Uniformity, 222
Unique normal form, 207
Universal

closure, 66
machine, 219
quantifier, 56
sentence, 124

Universe, 55
Upward Skolem–Löwenheim theorem, 106,

117

V
Valid, 146
Valuation, 17
Van Dalen, 178
Variable binding operations, 58
Variables, 53
Vaught’s theorem, 118
Vertex, 84
Verum, 17

W
Weak normalization, 192, 203
Well-ordering, 110

Z
Zorn’s lemma, 42, 99, 136
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